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Non evaporable getter (NEG) 
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Non Evaporable Getter are materials than can pump residual gaseous 

molecules after thermal activation in vacuum. 

 

 

 During the activation, the surface oxygen diffuses inside the bulk.  

T = RT 

T = Tactivation 

T = RT 

Metal oxide 



Non evaporable getter (NEG) 
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Suitable materials: High oxygen solubility limit and oxygen diffusivity. 

TiZrV alloys are used at CERN. 

Suitable materials 
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Once activated in vacuum, it  can pump residual gaseous molecules (H2, N2, 

CO and CO2). Neither CH4 nor noble gases are pumped.  

 

 
H2 is diffused into 

the bulk 
CO is adsorbed in 

the surface 

Non evaporable getter (NEG) 

C=O 

C
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Saturation after 1x1015 

molecules/cm2 

H2 

H+ H+ 

H2 

Saturation after 1x1018 

molecules/cm2 



NEG thin film coating 
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NEG thin film coating, born at CERN, is usually done via applying DC magnetron 

sputtering on a twisted Ti, Zr, V wire cathode that is positioned on the centre. 

 

NEG is deposited 

via DC Magnetron 

Sputtering 

Before coating After coating 

TiZrV cathode 

NEG 

coating 

Beam pipe 



NEG thin film coating 

 

7 

 

NEG thin film coating has been extensively applied in the LHC. 

 

About 1200 vacuum chambers of roughly 6 Km of long straight section beam pipe 

have been coated at CERN.  
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Motivation 
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New upgrades in accelerators require the use of vacuum chambers with very 

small apertures. 

 

• The small vacuum chamber aperture has a big impact on the vacuum 

system because the conductance of the vacuum pipe is reduced. 

 

• An approach with distributed pumping , as getter coating, is needed to keep 

the pressure low. 

 

H. D. Nuhn et al., Presentation at FLS (2012),  

Delta undulator, SLAC  

 

 

 

Vacuum chamber 

ID 5mm 

M. Modena et al. (2014) 

CLIC MB quadrupole [1] 

 

Vacuum chamber 

ID ~8 mm 

[1] http://clic-study.web.cern.ch 



NEG thin film coating 
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Physical vapor deposition techniques are difficult to apply to indefinitely small 

pipe diameters (the typical limit is about 8-10 mm diameter). Lack of space for 

the cathode and difficulty to maintain a stable plasma.  

 

The latter and the coating of complex shape require specific developments. A 

possible solution is evaluated in the present work. 

 

Vacuum chamber 

Vacuum chamber 

? 
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Reverse coating technique 
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The vacuum chamber is produced by copper electroforming around a 

sacrificial aluminium mandrel which is pre-coated with a NEG thin film.  

 

 

 



Reverse coating technique 
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During the electroforming, the stainless steel flanges are 

assembled to the chamber. Neither brazing nor EB 

welding are needed. 

 

 



Chamber manufacturing procedure 
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Chamber manufacturing procedure 
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Mandrel thin film coating 

• Aluminium mandrel tubes (series 6060) 

 

• Degreased in alkaline solution 

 

• Mounted in coating system equipped 

with TiZrV and Cu cathode 

 

• 1.5 µm of TiZrV coating 

 

• 3 µm of Cu coating 

 

 

 

NEG cathode 

Cu cathode 

Last Cu layer provides 

adherence for the plating 
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Chamber manufacturing procedure 
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 Flanges preparation 

 

 

Flange is machined with a smooth transition 

between the SS flange and the aluminium 

tube 

Ni and Cu plating on stainless steel 

Cu plating is not adherent on SS. We 

need a Ni flash plated layer 

Flange preparation 

Degreasing Ni plating Cu plating 
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Chamber manufacturing procedure 
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Cathode (reduction):  

Cu2+ + 2e- → Cu 

 

 

 

Anode (oxidation):  

                     Cu→ Cu2+ + 2e- 

V 

Electrodeposition of Cu, 2A/dm2 , copper sulphate bath 

• 1 mm of Cu deposited (chamber wall thickness) 

 

Copper electroforming 

• Two plating procedures: DC with brightener and AC without additives 
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DN40 



Chamber manufacturing procedure 
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Mandrel removal 

Al removal by NaOH chemical etching 

TiZrV coating is visible on the inner surface 

of the chamber.  

2Al + 2NaOH+ 6H2O  2Na + 3H2 + 2Al(OH)3 

Acidic rinsing in ammonium persulfate to 

clean residues from mandrel. 
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Challenges 
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• Removal of the aluminium mandrel without 

damaging the NEG thin film 

 

• Leak-tight and robust assembly without brazing or 

EB welding step 

 

• Preserve the NEG film purity from process related 

impurities 

 Limit the transfer of impurities from electroformed copper to 

the NEG film 

 Avoid to introduce impurities from the mandrel or etching 

solution 



TiZrV coating characterization: FIB cross section 

Recipe 1 Recipe 2 

Two different coating recipes are tested. 

NEG coating follows the topography of the mandrel 
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Coating thickness profile on chambers produced 

Chamber 16 mm diameter 

Chamber 5 mm diameter 

0.3 m 

0.4 m 

Chamber 3 mm diameter Chamber 4 mm diameter 

0.1 m 0.15 m 

Chamber 6 mm diameter 

0.15 m 

Chamber 12 mm diameter 

0.3 m 
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Chamber 3 mm diameter Chamber 4 mm diameter 

Coating thickness profile (NEG on Cu) 
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Homogeneous TiZrV composition, Thickness variation < 15% 
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with XRF analysis 
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TiZrV coating characterization: X-Ray diffraction 

analysis 

Structure composition map of TiZrV 

films based on the crystal grain size.  

Grain size below 5 nm. 

A. E. Prodromides et al. Vacuum 60 (2001) 35, 41 

Best activation region 

Grain size above 100 nm. 
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TiZrV coating characterization: X-Ray diffraction 

analysis 

For all samples the crystallite size is very small, < 5nm, around 3 nm.  
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Challenges 
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• Removal of the aluminium mandrel without 

damaging the NEG thin film 

 

• Leak-tight and robust assembly without brazing 

or EB welding step 

 



Reverse coating technique 
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During the electroforming, the stainless steel flanges are 

assembled to the chamber. Neither brazing nor EB 

welding are needed. 

 

 



Mechanical performance 

Robustness of the assembly? Tensile and compression tests 
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Mechanical performance 

34 
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Mechanical performance 
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Challenges 
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• Removal of the aluminium mandrel without damaging 

the NEG thin film 

 

• Leak-tight and robust assembly without brazing or EB 

welding step 

 

• Preserve the NEG film from process related 

impurities 



Pumping speed measurement via Transmission tests 

=
∆𝑃2
∆𝑃1

 Pressure ratio 

NEG coated vacuum chamber 

TMP 

H2 
L 

P1 

P2 

With a Monte Carlo simulation we calculate the 

sticking probability of H2 from ∆P2/∆P1 
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Sticking probability (probability of a molecule to stick to the surface and be pumped) 



Pumping speed measurement via Transmission tests 
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Case of study: 

Chamber 16mm diameter, 0.4m long 

L/R=50 

P1 

P2 

Pumping speed via transmission 
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Pumping speed measurement via Transmission tests 
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H2 sticking probability 



Pumping performance via Transmission tests 
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The results show a good capacity 
when activated 250°C for 24 hours 

CO saturation measurement: 1 Monolayer ML CO (5x1014 -1x1015)  

220 240 260 280
1E13

1E14

1E15

CO molecules/cm
2

24h+24h

24-hours heating temperature

 Recipe1

 Recipe2

24h

1ML 

CO is adsorbed in 

the surface 

C=O 

C
=

O
 

C=O 



Open questions 

Why a delay in activation temperature? 
 

NEG  composition OK  

NEG microstructure  OK  

 

Impurities in the NEG film might affect this process and limit the pumping 

speed.  

 

 

Possible sources: 

 

 • Impurities in the electroformed copper migrating to the NEG film 

• Impurities transfer during mandrel etching 
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Challenges 
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• Removal of the aluminium mandrel without damaging 

the NEG thin film 

 

• Leak-tight and robust assembly without brazing or EB 

welding step 

 

• Preserve the NEG film from process related impurities 

 Limit the transfer of impurities from electroformed 

copper to the NEG film 
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Measurement of impurities on electroformed copper 

 
Thermal Desorption Spectrometer (TDS) 

Measurement of gases desorbed 

as a function of temperature for 

different electroplating parameters  

TDS System 

4. 

How does it work? 

1. UHV system: Vacuum chamber + pumping 

system 

2. Heater 

3. Residual Gas Analyser (RGA) 

4. Sample: 10 mm x 10 mm x 1 mm 
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Copper electroformed outgassing 

Cu OFE  

1mm thickness 
Electroformed Cu 

1mm thickness 
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Copper electroformed outgassing 

DC plating with brightener 

(organic additive) 
AC plating bath without additives 

Two plating procedures: DC with brightener and AC without additives 

Grain refinement Columnar growth 
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Copper electroformed outgassing 

H2 concentration ppm 

H2: concentration of H2 increases with thickness (bath drift). Keep the lowest 

thickness possible 

 

DC +  

additives 

AC 
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Copper electroformed outgassing 
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Challenges 

 

50 

• Removal of the aluminium mandrel without damaging 

the NEG thin film 

 

• Leak-tight and robust assembly without brazing or EB 

welding step 

 

• Preserve the NEG film from process related impurities 

 Limit the transfer of impurities from electroformed copper to 

the NEG film 

 Avoid to introduce impurities from the mandrel or etching 

solution 
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Oxygen decrease (%) surface to bulk 



XPS surface activation  

1.5 mm thickness mandrel: 24 hours etching 

0.5 mm thickness mandrel: 7 hours etching 

0.5mm thickness 1.5mm thickness 

Oxygen decrease (%) surface to bulk 

Oxygen decrease is delayed in 

temperature with increasing etching time 
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Preparation for real application 

No diameter constraint is found. Real case scenario precises long 

chambers (magnets are usually 2m long). 

In our facilities, we comissioned a bath of 3m height to produce up to 

2.5m length vacuum chambers. 

The coating system is limited to 0.5 m length so the assembly of 

several tubes will be needed to produce a chamber. 

 

H. D. Nuhn et. al, Proceedings of FEL2015 

Presentation at FLS 2012, Delta undulator, SLAC  

 

 

 

Vacuum chamber 

ID 5mm 
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Longer lengths: 1.2 meters 

 
Chamber: 1.2 m length, 5 mm diameter chamber 

1.2 m 

Copper plating 2A/dm2, 1 mm thickness 

Internal contact 

Ø 5 mm 

3m height 
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No difficulties encountered at the present stage 

After etching of aluminum mandrel 
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Longer lengths: 1.2 meters 

It is leak-tight 
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Examples of chambers produced 
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Examples of chambers produced 
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60 

Next steps: Scale up to 2m 
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Conclusions & Outlook 

 

The electroformed pre-coated chambers can be successfully assembled and 

the overall assembly procedure was validated from the point of view of 

mechanical strength and vacuum tightness.  

 

  

The aluminium mandrel suits well as it is easy to procure, and to machine; it’s 

compatible with PVD coating systems; it guarantees mechanical stiffness 

during the all process.  

 

 

The chambers exhibited a good H2 pumping speed performance when 

activated at more than 250˚C. CO pumping starts already at low activation 

temperatures.  
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Studies still ongoing: Influence of type of aluminium mandrel on activation 

behaviour and copper plating parameters optimization. 

 

 

The next step will focus in the validation of the procedure for long chambers 

(2 m) and measurements in transmission. 

 

 

We are looking for real case applications in order to specify tolerances and 

possible testing in accelerator. 

 

 

Conclusions & Outlook 
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2 m prototype 
Transmission 

measurements 

Possible 
testing in 

accelerator 



 

Thank you for your attention! 
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Coating thickness profile (NEG on Cu) 

Chamber 6 mm diameter Chamber 5 mm diameter 

Homogeneous TiZrV composition, Thickness variation < 20% 

0.3 m 0.15 m 

Thickness (μm) Thickness (μm) M (%) M (%) 

Length [mm] Length [mm] 
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Baked chamber 280°C 
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NEG coated vacuum chamber 
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With a Monte Carlo simulation we calculate the 

sticking probability of H2 from ∆P2/∆P1 

Removing CH4 cracking from gauge: LN2 trap 

LN2 

Pumping speed measurement via Transmission tests 
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SEY after activation 1h at 250°C 
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Examples of chambers produced 
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5mm internal diameter, 1.2 m length, TiZrV coated chamber 
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