

Novel methods for NEG film and vacuum chamber production:

Development of copper electroformed NEG coated vacuum chambers

Lucia Lain Amador (UFC, CERN)

Paolo Chiggiato, Leonel M. A. Ferreira, Mauro Taborelli, Wilhelmus Vollenberg, Marie-Laure Doche (UFC), Jean-Yves Hihn (UFC)

UFC: Université de Franche-Comté, Besancon, France

Outline

- 1. Introduction
- 2. Motivation
- 3. Reverse coating technique
- 4. Challenges
- 5. Preparation for real application
- 6. Conclusions & Outlook

Non evaporable getter (NEG)

Non Evaporable Getter are materials than can pump residual gaseous molecules after thermal activation in vacuum.

During the activation, the surface oxygen diffuses inside the bulk.

Non evaporable getter (NEG)

Suitable materials: High oxygen solubility limit and oxygen diffusivity. TiZrV alloys are used at CERN.

Periodic Tabl <mark>e</mark>																	
1 Hydrogen 3 Lithium 11 Na	4 Beryllium 12 Magnesium		Alkali Alkalir Marsii Alkalir Lantha	ne tion anoid	Actinc Post-ti Metall	id ransition oid etal	Halog Noble Unkno	en 9 gas 5 wn			SOFTF www.soft;	5 Baron 13 Aluminium	6 Carbon 14 Silicon	7 Nitrogen 15 P	8 O Oxygen 16 Sutfar	9 Fluorine 17 Chlorine	² He ¹⁰ Neon ¹⁸ Ar
19 K Potassium 37 Rb	20 Ca Calcium 38 Sr	21 Sc Scandium 39 Y	22 Ti ^{Titanium} 40 Zr	23 V Vanadium 41 Nb	24 Cr ^{Chromium} 42 Mo	25 Mn Manganese 43 Tc	26 Fe Iron 44 Ru	27 Co ^{Cobalt} 45 Rh	28 Ni Nickel 46 Pd	29 Cu Copper 47 Aa	30 Zn ^{Zinc} 48 Cd	31 Gallium 49	32 Germanium 50 Sn	33 Arsenic 51 Sb	34 Se Selenium 52 Te	35 Bromine 53	36 Krypton 54 Xe
Rubidium 55 Cesium	Strontium 56 Ba Barium	Yttrium *	Zirconium 72 Hf Hafnium	Niobium 73 Ta Tantalum	Molybdenum 74 W Tungsten	Technetium 75 Re Rhenium	Ruthenium 76 Osmium	Rhodium 77 Iridium	Palladium 78 Pt Platinum	Silver 79 Au Gold	Cadmium 80 Hg Mercury	Indium 81 TI Thailium	Tin 82 Pb Lead	Antimony 83 Bi Bismuth	Tellurium 84 Po Polonium	lodine 85 At Astatine	Xenon 86 Rn Radon
87 Fr Francium	Radium	**	Rutherfordiur	Dubnium	Sg Seaborgium	Bohrium	Hassium	Mt Meitnerium	Darmstadtiun	Roentgenium	Copernicium	Uut Ununtrium	Flerovium		LV Livermorium		
	*	Lanthanum	Cerium 90	Pr Praseodymiur 91	Neodymium 92	Promethium 93	Samarium 94	Europium 95	Gadolinium	97	Dysprosium 98	Ho Holmium 99	Erbium 100	Tm Thulium 101	Ytterbium 102	Lutetium 103	
	**	AC	Thorium	Pa Protactinium	Uranium	Neptunium	PU	Americium	Curium	DK Berkelium	Californium	ES Einsteinium	FM	IVI C Mendelevium	Nobelium	Lawrencium	

→Suitable materials

Non evaporable getter (NEG)

Once activated in vacuum, it can pump residual gaseous molecules (H_2 , N_2 , CO and CO₂). Neither CH₄ nor noble gases are pumped.

H₂ is diffused into the bulk

CO is adsorbed in the surface

 H_2

Saturation after 1x10¹⁸ molecules/cm²

Saturation after 1x10¹⁵ molecules/cm²

NEG thin film coating

NEG thin film coating, born at CERN, is usually done via applying DC magnetron sputtering on a twisted Ti, Zr, V wire cathode that is positioned on the centre.

NEG thin film coating

NEG thin film coating has been extensively applied in the LHC.

About 1200 vacuum chambers of roughly 6 Km of long straight section beam pipe have been coated at CERN.

Outline

1. Introduction

2. Motivation

- 3. Reverse coating technique
- 4. Challenges
- 5. Preparation for real application
- 6. Conclusions & Outlook

Motivation

M. Modena et al. (2014) CLIC MB quadrupole^[1]

H. D. Nuhn et al., Presentation at FLS (2012), Delta undulator, SLAC

New upgrades in accelerators require the use of vacuum chambers with very small apertures.

- The small vacuum chamber aperture has a big impact on the vacuum system because the conductance of the vacuum pipe is reduced.
- An approach with distributed pumping, as getter coating, is needed to keep the pressure low.

NEG thin film coating

Physical vapor deposition techniques are difficult to apply to indefinitely small pipe diameters (the typical limit is about 8-10 mm diameter). Lack of space for the cathode and difficulty to maintain a stable plasma.

The latter and the coating of complex shape require specific developments. A possible solution is evaluated in the present work.

Outline

- 1. Introduction
- 2. Motivation
- 3. Reverse coating technique
- 4. Challenges
- 5. Preparation for real application
- 6. Conclusions & Outlook

Reverse coating technique

The vacuum chamber is produced by copper electroforming around a sacrificial aluminium mandrel which is pre-coated with a NEG thin film.

Reverse coating technique

During the electroforming, the stainless steel flanges are assembled to the chamber. Neither brazing nor EB welding are needed.

Chamber manufacturing procedure

Chamber manufacturing procedure

Mandrel thin film coating

- Aluminium mandrel tubes (series 6060)
- Degreased in alkaline solution
- Mounted in coating system equipped with TiZrV and Cu cathode
 - 1.5 µm of TiZrV coating
 - 3 µm of Cu coating

Chamber manufacturing procedure

Flanges preparation

Flange is machined with a smooth transition between the SS flange and the aluminium tube

Cu plating is not adherent on SS. We need a Ni flash plated layer

Ni and Cu plating on stainless steel

Chamber manufacturing procedure

Copper electroforming

Electrodeposition of Cu, 2A/dm², copper sulphate bath

- 1 mm of Cu deposited (chamber wall thickness)
- Two plating procedures: DC with brightener and AC without additives

Cu chamber thickness profile

Leak-tight joining with flanges

Chamber manufacturing procedure

Mandrel removal

Al removal by NaOH chemical etching

 $2AI + 2NaOH + 6H_2O \rightarrow 2Na + 3H_2 + 2AI(OH)_3$

Acidic rinsing in ammonium persulfate to clean residues from mandrel.

TiZrV coating is visible on the inner surface of the chamber.

Outline

- 1. Introduction
- 2. Motivation
- 3. Reverse coating technique

4. Challenges

- 5. Preparation for real application
- 6. Conclusions & Outlook

Challenges

 Removal of the aluminium mandrel without damaging the NEG thin film

TiZrV coating characterization: FIB cross section

Two different coating recipes are tested.

Recipe 1

Recipe 2

NEG coating follows the topography of the mandrel

Coating thickness profile on chambers produced

Chamber 16 mm diameter

Chamber 6 mm diameter

Chamber 4 mm diameter

Chamber 12 mm diameter

Chamber 5 mm diameter

Chamber 3 mm diameter

Coating thickness profile (NEG on Cu) with XRF analysis

Chamber 4 mm diameter

Chamber 3 mm diameter

Homogeneous TiZrV composition, Thickness variation < 15%

TiZrV coating characterization: X-Ray diffraction analysis

Structure composition map of TiZrV films based on the crystal grain size.

A. E. Prodromides et al. Vacuum 60 (2001) 35, 41

Best activation region

Grain size above 100 nm.

TiZrV coating characterization: X-Ray diffraction analysis

For all samples the crystallite size is very small, < 5nm, around 3 nm.

Challenges

- Removal of the aluminium mandrel without damaging the NEG thin film
- Leak-tight and robust assembly without brazing or EB welding step

Reverse coating technique

During the electroforming, the stainless steel flanges are assembled to the chamber. Neither brazing nor EB welding are needed.

Robustness of the assembly? Tensile and compression tests

Chambers before and after bake-out exhibit a tensile strength comparable to Cu OFE

Mechanical and tightness performance

Challenges

- Removal of the aluminium mandrel without damaging the NEG thin film
- Leak-tight and robust assembly without brazing or EB welding step
- Preserve the NEG film from process related impurities

Pressure ratio = $\frac{\Delta P_2}{\Delta P_1}$ With a Monte Carlo simulation we calculate the sticking probability of H₂ from $\Delta P2/\Delta P1$

Sticking probability (probability of a molecule to stick to the surface and be pumped)

Monte Carlo simulation

Case of study:

Chamber 16mm diameter, 0.4m long

L/R=50

Pumping performance via Transmission tests

 H_2 sticking factor comes close to 1x10⁻², but there is a delay in activation temperature

Pumping performance via Transmission tests

CO saturation measurement: 1 Monolayer ML CO (5x10¹⁴ -1x10¹⁵)

The results show a good capacity when activated 250°C for 24 hours

24-hours heating temperature

Open questions

Why a delay in activation temperature?

NEG compositionOKNEG microstructureOK

Impurities in the NEG film might affect this process and limit the pumping speed.

Possible sources:

- Impurities in the electroformed copper migrating to the NEG film
- Impurities transfer during mandrel etching

Challenges

- Removal of the aluminium mandrel without damaging the NEG thin film
- Leak-tight and robust assembly without brazing or EB welding step
- Preserve the NEG film from process related impurities
 - Limit the transfer of impurities from electroformed copper to the NEG film

Measurement of impurities on electroformed copper

Thermal Desorption Spectrometer (TDS)

How does it work?

- UHV system: Vacuum chamber + pumping system
- 2. Heater
- 3. Residual Gas Analyser (RGA)
- 4. Sample: 10 mm x 10 mm x 1 mm

TDS System

Measurement of gases desorbed as a function of temperature for different electroplating parameters

Grain refinement

Two plating procedures: DC with brightener and AC without additives

DC plating with brightener (organic additive)

AC plating bath without additives

Columnar growth

H₂ concentration ppm

 $\rm H_2$: concentration of $\rm H_2$ increases with thickness (bath drift). Keep the lowest thickness possible

 H_2 : concentration of H_2 increases with thickness (bath drift). Keep the lowest thickness possible

O₂ : Reduce the presence the oxygen by avoiding organic additives

Challenges

- Removal of the aluminium mandrel without damaging the NEG thin film
- Leak-tight and robust assembly without brazing or EB welding step
- Preserve the NEG film from process related impurities
 - Limit the transfer of impurities from electroformed copper to the NEG film
 - Avoid to introduce impurities from the mandrel or etching solution

XPS surface analysis

X-ray Photoemission Spectroscopy:

XPS activation evolution and detection of impurities

XPS surface activation

1.5 mm thickness mandrel: 24 hours etching0.5 mm thickness mandrel: 7 hours etching

1.5mm thickness 0.5mm thickness

XPS surface activation

1.5 mm thickness mandrel: 24 hours etching0.5 mm thickness mandrel: 7 hours etching

1.5mm thickness 0.5mm thickness

Oxygen decrease is delayed in temperature with increasing etching time

Outline

- 1. Motivation
- 2. Usual NEG sputtering technique
- 3. Reverse coating technique
- 4. Challenges
- 5. Preparation for real application
- 6. Conclusions & Outlook

Preparation for real application

No diameter constraint is found. Real case scenario precises long chambers (magnets are usually 2m long).

In our facilities, we comissioned a bath of 3m height to produce up to 2.5m length vacuum chambers.

The coating system is limited to 0.5 m length so the assembly of several tubes will be needed to produce a chamber.

H. D. Nuhn et. al, Proceedings of FEL2015 Presentation at FLS 2012, Delta undulator, SLAC

Longer lengths: 1.2 meters

Chamber: 1.2 m length, 5 mm diameter chamber

Copper plating 2A/dm², 1 mm thickness

After etching of aluminum mandrel

No difficulties encountered at the present stage

Longer lengths: 1.2 meters

It is leak-tight

Examples of chambers produced

3mm internal diameter, 1 m length TiZrV coated chamber

Examples of chambers produced

3mm internal diameter, 1 m length TiZrV coated chamber

Outline

- 1. Motivation
- 2. Usual NEG sputtering technique
- 3. Reverse coating technique
- 4. Challenges
- 5. Preparation for real application
- 6. Conclusions & Outlook

Conclusions & Outlook

The electroformed pre-coated chambers can be successfully assembled and the overall assembly procedure was validated from the point of view of mechanical strength and vacuum tightness.

The aluminium mandrel suits well as it is easy to procure, and to machine; it's compatible with PVD coating systems; it guarantees mechanical stiffness during the all process.

The chambers exhibited a good H_2 pumping speed performance when activated at more than 250°C. CO pumping starts already at low activation temperatures.

Conclusions & Outlook

Studies still ongoing: Influence of type of aluminium mandrel on activation behaviour and copper plating parameters optimization.

The next step will focus in the validation of the procedure for long chambers (2 m) and measurements in transmission.

We are looking for real case applications in order to specify tolerances and possible testing in accelerator.

Thank you for your attention!

Acknowledgements to: TE-VSC-SCC section

Coating thickness profile (NEG on Cu)

Chamber 6 mm diameter

Chamber 5 mm diameter

Homogeneous TiZrV composition, Thickness variation < 20%

Removing CH₄ cracking from gauge: LN₂ trap

Pressure ratio = $\frac{\Delta P_2}{\Delta P_1}$

With a Monte Carlo simulation we calculate the sticking probability of H_2 from $\Delta P2/\Delta P1$

SEY after activation 1h at 250°C

Examples of chambers produced

5mm internal diameter, 1.2 m length, TiZrV coated chamber

