UPPSALA UNIVERSITET

Nonlinear Beam-Dynamics with Hamiltonians, Lie Maps, and Normal Forms

Volker Ziemann Uppsala University

Outline

- Motivation
- Hamiltonian Mechanics and Maps
- Examples of Lie maps
- Pushing Lie maps around
- Concatenating Lie-maps
- Resonance driving terms
- Several applications
- Normal Forms

Non-linearities

- Unwanted non-linearities from magnet fringe fields or magnet errors
- Sextupoles are needed for chromaticity correction if the quadrupoles are very strong
- Octupoles needed to add tune spread to provide Landaudamping against instabilities
- Beam stability at large amplitudes \rightarrow Dynamic Aperture
- Can we place multipoles such that they 'cancel'?

$$
\binom{\hat{x}_{n+1}}{\hat{x}_{n+1}^{\prime}}=\left(\begin{array}{cc}
\cos \mu & \sin \mu \\
-\sin \mu & \cos \mu
\end{array}\right)\binom{\hat{x}_{n}}{\hat{x}_{n}^{\prime}-\hat{x}_{n}^{2}}
$$

- Sometimes islands

Power Series

$$
\binom{\hat{x}_{n+1}}{\hat{x}_{n+1}^{n}}=\left(\begin{array}{cc}
\cos \mu & \sin \mu \\
-\sin \mu & \cos \mu
\end{array}\right)\left(\begin{array}{c}
\hat{x}_{n} \\
\hat{x}_{n}^{\prime}
\end{array} \hat{x}_{n}^{2}\right)
$$

- Linear transport described by transfer matrices
- Sextupole kicks: $x^{\prime} \leftarrow x^{\prime}-k_{2} L x^{2} / 2$
- Inserting polynomials into polynomials into polynomials into polynomials into polynomials......
- Differential Algebra codes (M. Berz's COSY- ∞)
- Huge (automatized) book-keeping exercise up to a given order
- Power series truncation breaks symplecticity of the map
- Redundant representation, 2×2-TM has 3 independent components, but requires 4 stored numbers
- Does not directly provide 'understanding' of cancellations

Hamiltonians

- Hamiltonians to the rescue

$$
H=h_{1} x^{2}+h_{2} x x^{\prime}+h_{3} x^{\prime 2}
$$

- Consider that there are 3 independent monomials of 2nd order: $x^{2}, x x^{\prime}, x^{\prime 2}$
- Coefficients h_{i} describe aberrations
- Non-redundant representation
- Remember quantum mechanics where the hamiltonian is the generator of the motion in time
- It pushes the wave-function or state-vector forward in time

Hamilton's Equations

- In mechanical systems Hamilton's equations determine trajectory $x(t)$

$$
\frac{d x}{d t}=\frac{\partial H}{\partial x^{\prime}} \quad, \quad \frac{d x^{\prime}}{d t}=-\frac{\partial H}{\partial x}
$$

- Consider the rate of change of a function $f\left(x, x^{\prime}\right)$

$$
\frac{d f}{d t}=\frac{\partial f}{\partial q} \frac{d q}{d t}+\frac{\partial f}{\partial p} \frac{d p}{d t}=\frac{\partial f}{\partial q} \frac{\partial H}{\partial q}-\frac{\partial f}{\partial p} \frac{\partial H}{\partial p}=[f, H]=[-H, f]=:-H: f
$$

- Other Nomenclature: $\frac{d}{d t} f\left(x, x^{\prime}\right)=[-H, f]=:-H: f$
- A Lie-operator is a Poisson bracket waiting to happen

Finite steps and Lie-Maps

- Powers of PB

$$
:-H:^{0} f=f, \quad:-H:^{1} f=[-H, f], \quad:-H:^{2} f=[-H,[-H, f]]
$$

- Allows to write Taylor-series

$$
f(t+\Delta t)=\sum_{n=0}^{\infty} \frac{\Delta t^{n}}{n!} \frac{d^{n} f}{d t^{n}}=\sum_{n=0}^{\infty} \frac{\Delta t^{n}}{n!}:-H:^{n} f=e^{:-H: \Delta t} f
$$

- that describes transport over finite time step

Hamiltonians for Multipoles

- Magnetic fields for thin-lens multipoles can be derived from a complex potential

$$
F(z)=-B_{0} R_{0} \sum_{m=1}^{\infty} \frac{b_{m}+i a_{m}}{m}\left(\frac{z}{R_{0}}\right)^{m}=-\frac{B \rho}{L} \sum_{m=1}^{\infty} \frac{k_{m-1} L}{m!} z^{m}
$$

- Consistent with notation and $w(z)=i d F / d z$

$$
i w(z)=B_{y}+i B_{x}=-\frac{d F}{d z}=B_{0} \sum_{m=1}^{\infty}\left(b_{m}+i a_{m}\right)\left(\frac{z}{R_{0}}\right)^{m-1}
$$

- Integrate of length and scale with momentum

$$
\tilde{H}_{S}=H_{S}\left(x, x^{\prime}, y, y^{\prime}\right) \Delta \dot{s}=\operatorname{Re}\left[-F_{S}(x+i y) L / \dot{B} \rho\right]=\left(k_{2} L / 6\right)\left(x^{3}-3 x y^{2}\right)
$$

Example: Thin Sextupole

UPPSALA UNIVERSITET

- Hamiltonian: $H=\left(K_{2} L / 6\right)\left(x^{3}-3 x y^{2}\right)$
- Map $M=e^{:-H:}=\left(1+:-H:+:-H^{2} / 2!+\ldots\right)$

$$
\begin{aligned}
& :-H: x^{m}=\left[x^{m}, H\right]=\frac{\partial x^{m}}{\partial x} \frac{\partial H}{\partial x^{\prime}}-\frac{\partial x^{m}}{\partial x^{\prime}} \frac{\partial H}{\partial x}+(y-\text { terms })=0 \\
& :-H: x^{\prime}=\frac{\partial x^{\prime}}{\partial x} \frac{\partial H}{\partial x^{\prime}}-\frac{\partial x^{\prime}}{\partial x^{\prime}} \frac{\partial H}{\partial x}+\frac{\partial x^{\prime}}{\partial y} \frac{\partial H}{\partial y^{\prime}}-\frac{\partial x^{\prime}}{\partial y^{\prime}} \frac{\partial H}{\partial y}=-\frac{\partial H}{\partial x}=-\frac{k_{2} L}{2}\left(x^{2}-y^{2}\right) \\
& :-H:^{2} x^{\prime}=:-H:\left(-\frac{k_{2} L}{2}\left(x^{2}-y^{2}\right)\right)=0
\end{aligned}
$$

- Exponential series truncates
- Complete map

$$
\begin{array}{ll}
\mathcal{M} x=0 & , \quad \mathcal{M} x^{\prime}=x^{\prime}-\frac{k_{2} L}{2}\left(x^{2}-y^{2}\right) \\
\mathcal{M} y=0 \quad, \quad \mathcal{M} y^{\prime}=y^{\prime}+k_{2} L x y
\end{array}
$$

- Well-known kicks

Drift space and Quadrupole

- Equation of motion $\quad x^{\prime \prime}+k x=0$
- Derive from Hamiltonian $\quad H=\frac{1}{2}\left(x^{2}+k x^{2}\right)$
- Calculate PB for x and x^{\prime}

$$
\begin{aligned}
& :-H: x=[-H, x]=x^{\prime} \\
& :-H: x^{\prime}=\left[-H, x^{\prime}\right]=-k x
\end{aligned}
$$

- and for powers of

$$
:-H:^{2} x=[-H,[-H, x]]=-k x
$$

Drifts and quadrupoles 2

- Calculate for finite step size s
$e^{:-H: s} x=x+s:-H: x+\frac{s^{2}}{2!}:-H:^{2} x+\frac{s^{3}}{3!}:-H:^{3} x+\ldots$
$=x+s x^{\prime}-\frac{k s^{2}}{2!} x-\frac{k s^{3}}{3!} x^{\prime}+\ldots$
$=x\left(1-\frac{k s^{2}}{2!}+\frac{k^{2} s^{4}}{4!}+\ldots\right)+x^{\prime}\left(s-\frac{k s^{3}}{3!}+\ldots\right)$
$=x \cos (\sqrt{k} s)+\frac{x^{\prime}}{\sqrt{k}} \sin (\sqrt{k} s)$
- same as first line of transfer matrix for quad
- Drift matrix for $\mathrm{k} \rightarrow 0$

Pushing Hamiltonians around...

- Nothing really gained yet, just shown that hamiltonians yield wellknown maps \rightarrow No new functionality, yet!
- Problem: If two elements (magnets) live at different places in a beamline, their Hamiltonians depend on different variables
- Solution: Push all Hamiltonians to a reference point, normally at the end of the beam line (Idea due to J. Irwin, SLAC)

$$
M=R e^{-H(x 1):}=\left(R e^{-H(x 1):} R^{-1}\right) R=(\text { non-trivial })=e^{-H(R \times 1):} R=e^{-H(x)):} R
$$

- Push a hamiltonian to the reference point with a similarity transform by changing its variables to those of the reference point. This makes the effect of the Hamiltonians commensurate.

Aside: Pushing with Software

- 1st order:

$$
y_{i}=R_{i j} x_{j} \quad \rightarrow \quad x_{i}=R_{i j}^{-1} y_{j}
$$

$$
\begin{aligned}
& H^{(1)}=h_{i}^{(1)} x_{i}=h_{i}^{(1)} R_{i j}^{-1} y_{j}=\tilde{h}_{j}^{(1)} y_{j} \\
& \tilde{h}_{j}^{(1)}=R_{i j}^{-1} h_{i}^{(1)} \quad \rightarrow \quad \tilde{h}^{(1)}=\left(R^{-1}\right)^{T} h^{(1)}=S^{(1)} h^{(1)}
\end{aligned}
$$

- 2nd order: $y_{i} y_{j}=R_{i k} R_{j l} x_{k} x_{l}$

$$
\begin{aligned}
& \left(\begin{array}{c}
y_{1}^{2} \\
y_{1} y_{2} \\
y_{2}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
R_{11}^{2} & 2 R_{11} R_{12} & R_{12}^{2} \\
R_{11} R_{21} & R_{11} R_{22}+R_{12} R_{21} & R_{11} R_{21} \\
R_{21}^{2} & 2 R_{21} R_{22} & R_{22}^{2}
\end{array}\right)\left(\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right) \quad(\overrightarrow{y y})=R R(\overrightarrow{x x}) \\
& H^{(2)}=\sum_{i} h_{i}^{(2)}(x x)_{i}=\sum_{i} \sum_{j} h_{i}^{(2)}\left(R R^{-1}\right)_{i j}(y y)_{j}=\sum_{j} \tilde{h}_{j}^{(2)}(y y)_{j} \\
& \tilde{h}_{j}^{(2)}=\sum_{i} h_{i}^{(2)}\left(R R^{-1}\right)_{i j} \rightarrow \quad \rightarrow \quad \tilde{h}^{(2)}=\left(R R^{-1}\right)^{T} h^{(2)}=S^{(2)} h^{(2)}
\end{aligned}
$$

- Analogous in higher orders, coded up to 5th (decapole) order

- First order (corrector magnets)

$$
\begin{aligned}
& h_{a} x=h_{a}\left(\bar{x}-L \bar{x}^{\prime}\right)=\tilde{h}_{a} \bar{x}+\tilde{h}_{b} \bar{x}^{\prime} \\
& h_{b} x^{\prime}=h_{b} \bar{x}^{\prime}=\tilde{h}_{a} \bar{x}+\tilde{h}_{b} \bar{x}^{\prime}
\end{aligned} \quad \rightarrow \quad\binom{\tilde{h}_{a}}{\tilde{h}_{b}}=\left(\begin{array}{cc}
1 & 0 \\
-L & 1
\end{array}\right)\binom{h_{a}}{h_{b}}
$$

- Third order (sextupoles)

$$
\begin{aligned}
h_{1} x^{3} & =h_{1}\left(\bar{x}-L \bar{x}^{\prime}\right)^{3} \\
& =h_{1}\left(\bar{x}^{3}-3 L \bar{x}^{2} \bar{x}^{\prime}+3 L^{2} \bar{x} \bar{x}^{\prime 2}-L^{3} \bar{x}^{\prime 3}\right) \\
& =\tilde{h}_{1} \bar{x}^{3}+\tilde{h}_{2} \bar{x}^{2} \bar{x}^{\prime}+\tilde{h}_{3} \bar{x} \bar{x}^{2}+\tilde{h}_{4} \bar{x}^{3} \\
h_{2} x^{2} x^{\prime} & =\ldots
\end{aligned}
$$

$$
\left(\begin{array}{l}
\tilde{h}_{1} \\
\tilde{h}_{2} \\
\tilde{h}_{3} \\
\tilde{h}_{4}
\end{array}\right)=\left(\begin{array}{cccc}
1 & * & * & * \\
-3 L & * & * & * \\
3 L^{2} & * & * & * \\
-L^{3} & * & * & *
\end{array}\right)\left(\begin{array}{c}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4}
\end{array}\right)
$$

- Automatic with help of two book-keeping arrays
$\rightarrow \mathrm{ii}=\mathrm{MM}\left(\mathrm{n}+10^{*} \mathrm{~m}\right)$, position of h_{ij} with $\mathrm{x}^{\mathrm{n}} \mathrm{x}^{\prime \mathrm{m}}$
$\rightarrow n=M O(j j, 1)$, power n of x^{n} in monomial $j j$
\% returns the array $M O, M M, C N$
\% MO(ii, l) is the power of x in monomial ii
\% MO(ii,2) is the power of xp in monomial ii
Set up book-keeping arrays
$\%$ ii $=M M(n+10 * m)$ position ii with $x^{\wedge} n * x^{\wedge} m$
\% CN strings with the monomials, nice to have for display
\boxminus function $[\mathrm{MO}, \mathrm{MM}, \mathrm{CN}]=$ hamini
$\mathrm{N}=2$; $\mathrm{N} M=14$;
MO=zeros (NM,N);
\% constructs the matrices to propagate the monomials
function $[S 1, S 2, S 3, S 4]=$ adjoint2 (R)
global MO MM CN
$\mathrm{N}=2 ; \mathrm{N}=\mathrm{N} ; \mathrm{N} 2=\mathrm{N} *(\mathrm{~N}+1) / 2 ; \mathrm{N} 3=\mathrm{N} 2^{*}(\mathrm{~N}+2) / 3 ; \mathrm{N} 4=\mathrm{N} 3^{*}(\mathrm{~N}+3) / 4 ;$
global MO MM CN
$N=2 ; \quad N 1=N ; N 2=N *(N+1) / 2 ; N 3=N 2^{*}(N+2) / 3 ; N 4=N 3^{*}(N+3) / 4 ;$
IR=zeros(1,N);
MM $=-1000 *$ ones (40,1);
ii=0;
for il=1:N
ii=ii+l;
MO(ii,:)=0;
MO(ii,il)=1;
MM(MO(ii,1)+10*MO(ii,2))=ii;
end
\%............................second
for il $=1: \mathrm{N}$
for jl=il:N
ii=ii+l;
MO(ii,:)=0;
$M O(\mathrm{ii}, \mathrm{il})=\mathrm{MO}(\mathrm{ii}, \mathrm{il})+\mathrm{l}$;
$M O(i i, j 1)=M O(i i, j 1)+1$;
$M M(M O(i i, 1)+10 * M O(i i, 2))=i i$
end
 - end
\%. third
for il=1:N

\%....................first order
Sl=R;
\%.second order
S2=zeros(3);
ii=0;
Construct the matrices
Gfunction $[S 1, S 2, S 3, S 4]=$ adjoint2(R)
\%..........................first
for $i=1=\mathrm{N}$
for $\mathrm{jl=il} 1: \mathrm{N}$
ii=ii+1;
11=11+1;
for $\mathrm{i} 2=1: \mathrm{N}$
for $12=1: N$
for $j 2=1: N$
for $\mathrm{j} 2=1: \mathrm{N}$
IR $(:)=0 ;$
$\operatorname{IR}(\mathrm{i} 2)=\operatorname{IR}(\mathrm{i} 2)+1$;
$\operatorname{IR}(\mathrm{j} 2)=\operatorname{IR}(\mathrm{j} 2)+1$;
S(1),S(2), \ldots
$\mathrm{jj}=\mathrm{MM}(\operatorname{IR}(1)+10 * \operatorname{IR}(2))-N 1$;
S2 $(\mathrm{ii}, \mathrm{jj})=\mathrm{S} 2(\mathrm{ii}, \mathrm{j} \mathrm{j})+\mathrm{Sl}(\mathrm{il}, \mathrm{i} 2) * \mathrm{Sl}(\mathrm{j} 1, \mathrm{j} 2)$;
end
end
end
end
 - end
\%..................third order
s3=zeros (4);
ii=0;
for il=l:N
ii=0;
for il=l:N
for il=l:N
for $j l=i l: N$
for jl=il:N
for $k l=j l: N$
for $k l=j 1: N$
for $\mathrm{kl}=\mathrm{jl:N} \quad[\mathrm{~N}, \mathrm{S2}, \mathrm{S3}, \mathrm{S4}]=\operatorname{adjoint2}(\mathrm{R})$;

li=1 $1+1 ;$
for $2=1: N$
\% Propagates a Hamiltonian through transfer matrix R
\square function $\mathrm{Hl}=$ propham (R, HO)
$N=2 ; \quad N 1=N ; \quad N 2=N *(N+1) / 2 ; \quad N 3=N 2^{*}(N+2) / 3 ; \quad N 4=N 3^{*}(N+3) / 4$;
$\mathrm{NM}=$ length (HO);
$\mathrm{Hl}=$ zeros $(\mathrm{NM}, 1)$;
$\mathrm{H} 1(\mathrm{~N} 1+1: \mathrm{N} 1+\mathrm{N} 2)=\mathrm{S} 2^{\prime} * \mathrm{HO}(\mathrm{N} 1+1: \mathrm{N} 1+\mathrm{N} 2)$;
$\mathrm{H} 1(\mathrm{~N} 1+\mathrm{N} 2+1: \mathrm{N} 1+\mathrm{N} 2+\mathrm{N} 3)=53^{\prime} * \mathrm{H} 0(\mathrm{~N} 1+\mathrm{N} 2+1: \mathrm{N} 1+\mathrm{N} 2+\mathrm{N} 3) ;$
$\mathrm{N} 1+1: \mathrm{N} 1+\mathrm{N} 2) ;$
$\mathrm{H} 1(\mathrm{~N} 1+\mathrm{N} 2+\mathrm{N} 3+1: \mathrm{N} 1+\mathrm{N} 2+\mathrm{N} 3+\mathrm{N} 4)=\mathrm{S} 4^{\prime} * \mathrm{H} \odot(\mathrm{N} 1+\mathrm{N} 2+\mathrm{N} 3+1: \mathrm{N} 1+\mathrm{N} 2+\mathrm{N} 3+\mathrm{N} 4) ;$

Propagate
 Propagate

 Hamiltonian$\mathrm{H} 1(\mathrm{~N} 1+\mathrm{N} 2+1: \mathrm{Nl}+\mathrm{N} 2+\mathrm{N} 3)=\mathrm{S} 31 * \mathrm{HO}(\mathrm{N} 1+\mathrm{N} 2+1: \mathrm{N} 1+\mathrm{N} 2+\mathrm{N} 3)$
$-\mathrm{Hl}(\mathrm{N} 1+\mathrm{N} 2+\mathrm{N} 3+1: \mathrm{N} 1+\mathrm{N} 2+\mathrm{N} 3+\mathrm{N} 4)=\mathrm{S} 41 * \mathrm{H} 0(\mathrm{~N} 1+\mathrm{N} 2+\mathrm{N} 3+1: \mathrm{N} 1+\mathrm{N} 2+\mathrm{N} 3+\mathrm{N} 4) ;$

Pushing to a Reference Point

- Consider beamline with two elements

- NPS=normalized phase space
$\mathrm{NPS}=\left(\begin{array}{cc}1 / \sqrt{\beta} & 0 \\ -\alpha / \sqrt{\beta} & \sqrt{\beta}\end{array}\right) \quad \leftarrow \quad$ absorbed in R_{2}
- Map

$$
\begin{aligned}
\mathcal{M} & =R_{2} e^{:-H_{2}\left(\vec{x}_{2}\right):} R_{1} e^{:-H_{1}\left(\vec{x}_{1}\right):} \\
& =R_{2} e^{:-H_{2}\left(\vec{x}_{2}\right):} \overbrace{R_{2}^{-1} R_{2}}^{=1} R_{1} e^{:-H_{1}\left(\vec{x}_{1}\right)}: \overbrace{R_{1}^{-1} R_{2}^{-1} R_{2} R_{1}}^{=1} \\
& =\underbrace{R_{2} e^{:-H_{2}\left(\vec{x}_{2}\right)}: R_{2}^{-1}}_{e^{:-\tilde{H}_{2}\left(\vec{x}_{0}\right)}} \underbrace{R_{2} R_{1} e^{:-H_{1}\left(\vec{x}_{1}\right):} R_{1}^{-1} R_{2}^{-1}}_{e^{:-\tilde{H}_{1}\left(\vec{x}_{0}\right):}} R_{2} R_{1} \\
& =e^{:-\tilde{H}_{2}\left(\vec{x}_{0}\right):} e^{:-\tilde{H}_{1}\left(\vec{x}_{0}\right):} R_{2} R_{1}
\end{aligned}
$$

- Both multipoles pushed to the end plus linear transport
- exact representation; only linear change of variables; generalize to more elements; all have the same independent variables; caveat about ordering of Lie maps

Concatenation

- Concatenate with Campbell-Baker-Hausdorff (CBH) formula

$$
e^{: H:} e^{: K:}=e^{: H:+: K:+(1 / 2)[: H:,: K:]+(1 / 12)[: H:-: K:,,[: H:,: K:]]+\ldots}
$$

- Interpretation: H is traversed before K, left to right, different from matrices!
- Step through beam line and concatenate the next element to what is already there
- It is mandatory that H and K depend on the same variables, otherwise: what does $[H, K]$ mean?
- Contains effect of three interacting elements consistently
- Symplectic representation of the full map:

$$
M=e^{--H:} R \quad \rightarrow \text { Super-duper-pop-up kick + linear map }
$$

...and in practice

UPPSALA

 UNIVERSITET- Poisson bracket of two monomials $f=h_{i i} x^{i_{1}} x^{i_{2}}$

$$
\begin{aligned}
{[f, g] } & =\frac{\partial f}{\partial x} \frac{\partial g}{\partial x^{\prime}}-\frac{\partial f}{\partial x^{\prime}} \frac{\partial g}{\partial x} \\
& =h_{i i} h_{j j}\left(i_{1} x^{i_{1}-1} x^{\prime i_{2}} x^{j_{1}} j_{2} x^{\prime j_{2}-1}-x^{i_{1}} i_{2} x^{\prime i_{2}-1} j_{1} x^{j_{1}-1} x^{\prime j_{2}}\right) \\
& =h_{i i} h_{j j}\left(i_{1} j_{2}-i_{2} j_{1}\right) x^{i_{1}+j_{1}-1} x^{\prime j_{1}+j_{2}-1}
\end{aligned}
$$

- Easy to code with the help of MM and MO

```
% calculate the Hamiltonian H0 for the beamline
% calcmat must be called beforehand for the transfer matrices
function HO=fulham(beamline)
nlines=size(beamline,l); H0=zeros(14,1);
Gor k=nlines:-1:l
    if (beamline (k,l)==1000) & its a nonlinearity
    Htmp=thamlie(beamline(k,4), beamline(k,5)); % dispham(Htmp,'Htmp =')
    R=TM(k,nlines); % TM to the end
    Htmp=propham(sinv(R),Htmp); % propagate hamiltonian
    HO=CBH(Htmp,HO) ; % concatenate with what is already there
    end
end
```


\% Poisson bracket

\square function $\mathrm{H} 3=\mathrm{PB}(\mathrm{H}, \mathrm{H} 2)$
global MO MM
$N M=\operatorname{length}(\mathrm{Hl}) ; H 3=z e r o s(N M, 1)$;
for ii=l:NM
if abs(H1(ii)) \leqslant le-10, continue; end
il=MO(ii,1); i2=M○(ii,2);
for $j \mathrm{j}=\mathrm{l}: \mathrm{NM}$
if $a b s(H 2(j j))<l e-10$, continue; end

$$
j 1=M \circ(j \mathrm{j}, 1) ; j 2=M \bigcirc(\mathrm{j} j, 2) ;
$$

xl2=H1(ii)*H2(jj); ll=il*j2-i2*jl;
if (ll==0), continue; end
kl=il+jl-l; if (kl<0 || kl>4), continue; end
$k 2=12+j 2-1$; if ($k 2<0| | k 2>4$), continue; end
if $(k 1+k 2>4)$, continue; end \% limit to octupole order $k k=M M(k 1+k 2 * 10)$;
$\mathrm{H} 3(k k)=\mathrm{H} 3(k k)+\mathrm{xl2*}$ ll;
end

- end
\% Campbell-Baker-Haussdorff
function $\mathrm{H} 3=\mathrm{CBH}\left(\mathrm{HI}, \mathrm{H}_{2}\right)$
Haux $=\mathrm{PB}\left(\mathrm{H} 1, \mathrm{H}_{2}\right)$;
$-\mathrm{H} 3=\mathrm{H} 1+\mathrm{H} 2+0.5 * \mathrm{Haux}+\mathrm{PB}(\mathrm{H} 1-\mathrm{H} 2, \mathrm{Haux}) / 12$;

Example: Placement of Sextupoles

UPPSALA UNIVERSITET

$H=x_{0}^{3}$	ϕ
ϱ	$H=x_{1}^{3}$
$\tilde{H}=x_{0}^{3}$	
${ }^{\infty} \tilde{H}=\left(x_{0} \cos \phi-x_{0}^{\prime} \sin \phi\right)^{3}$	

- Two sextupoles with equal strength at places with equal beta function
- Push both to the end of the beam line
- $H_{\text {both }}=\mathrm{x}_{0}{ }^{3}+\left(\mathrm{x}_{0} \cos \varphi-\mathrm{x}_{0}^{\prime} \sin \varphi\right)^{3}+1 / 2\left[\mathrm{x}_{0}{ }^{3},\left(\mathrm{x}_{0} \cos \varphi-\mathrm{x}_{0}^{\prime} \sin \varphi\right)^{3}\right]+\ldots$
- Cancels to all orders, if $\varphi=180$ degrees phase advance
- What happens with interleaved sextupoles (as in SLC-FF)?

- Sextupole order cancels pairwise, but octupole-order aberrations appear by PB of the empty and full dots.
- and you can explicitely calculate what octupole aberrations appear

Resonance Driving Terms

- $H\left(x_{0}, x_{0}^{\prime}, y_{0}, y_{0}^{\prime}\right)$ is given in variables of normalized phase space
- Introduce action-angle variables

$$
\begin{aligned}
x_{0}=\sqrt{2 J_{x}} \cos \left(\psi_{x}\right) \quad, \quad x_{0}^{\prime}=\sqrt{2 J_{x}} \sin \left(\psi_{x}\right) \\
y_{0}=\sqrt{2 J_{y}} \cos \left(\psi_{y}\right) \quad, \quad y_{0}^{\prime}=\sqrt{2 J_{y}} \sin \left(\psi_{y}\right) \quad H=H\left(J_{x}, J_{y}, \psi_{x}, \psi_{y}\right)
\end{aligned}
$$

- Collect terms proportional to $\cos / \sin \left(m \Psi_{x} \pm n \Psi_{\curlywedge}\right)$
- Example: 1-D sextupole already at the end of beam line

$$
\begin{aligned}
H & =\frac{k_{2} l}{6} x^{3}=\frac{k_{2} l}{6} \beta_{x}^{3 / 2} x_{0}^{3}=\frac{k_{2} l}{6} \beta_{x}^{3 / 2}\left(2 J_{x}\right)^{3 / 2} \cos { }^{3} \psi_{x} \\
& =\left(2 J_{x} \beta_{x}\right)^{3 / 2} \frac{k_{2}}{6}\left(\frac{1}{4} \cos \left(3 \psi_{x}\right)+\frac{3}{4} \cos \left(\psi_{x}\right)\right) \\
& =\left(2 J_{x}\right)^{3 / 2}(\underbrace{\beta_{x}^{3 / 2} \frac{k_{2} l}{24} \cos \left(3 \psi_{x}\right)}_{\text {driving term or3Qx}}+\underbrace{\beta_{x}^{3 / 2} \frac{k_{2} l}{8} \cos \left(\psi_{x}\right)}_{\text {driving term of } \beta_{x}})
\end{aligned}
$$

Can be done for resonances of any order

H has information about all resonances in the beam line

Example: Global Knobs

- Hamiltonian representation has the advantage that each coefficient represents an independent aberration. There is no redundancy among coefficients (unlike Taylor-maps).
- To first order in CBH, coefficients in the Hamiltonian are linear in the magnet excitations $k_{n} L$. Linear combinations of magnet excitations that control a single coefficient of the hamiltonian only, are easily constructed by matrix inversion

\rightarrow Knobs

- Numerology for the geometric aberrations in 2D
- 1st order: 4 aberrations $\rightarrow 4$ steering dipoles
- 2 nd order: $10=2 \times 3+4 \rightarrow 4$ skew quads
- 3rd order: 2×10, half upright, half skew sextupoles
- 4th order: 35 aberrations, octupoles
- 5 th order: $\mathrm{N}((\mathrm{N}+1) / 2)((\mathrm{N}+2) / 3)((\mathrm{N}+3) / 4)((\mathrm{N}+4) / 5)=56$ aberrations

Compensating amplitude-dependent tune-shift without driving fourth-order resonances, J. Ögren, VZ, NIM A869 (2017) 1

- Question: Can we place octupoles to only cause amplitude-dependent tune-shift, but no other aberrations? $\left[\sin\right.$ or $\cos \left(2 Q_{x}+2 Q_{y}\right)$]
- Two octupoles, 1D

$$
\begin{aligned}
\tilde{H} & =k\left(x \cos \phi+x^{\prime} \sin ^{\prime} \phi\right)^{4}+k\left(x \cos \phi-x^{\prime} \sin \phi\right)^{4} \\
& =2 k\left\{x^{4} \cos ^{4} \phi+6 x^{2} x^{\prime 2} \cos ^{2} \phi \sin ^{2} \phi+x^{\prime 4} \sin ^{4} \phi\right\}
\end{aligned}
$$

We want the Hamiltonian to only depend on $2 \mathrm{~J}=\mathrm{x}^{2}+\mathrm{x}^{\prime 2}$.

- Four octupoles, 1D

Can achieve this with four octupoles equally excited, provided 45° inbetween.

But $\varphi_{1}=0$ also works with three equally excited octupoles

2D octupoles

$$
\begin{array}{cccc}
\delta \phi_{x}=60^{\circ} & \delta \phi_{x}=60^{\circ} & \Delta \phi_{x}=\operatorname{arb} . & \delta \phi_{x}=60^{\circ} \\
\hline \delta \phi_{y}=60^{\circ} & \delta \phi_{x}=60^{\circ} \\
\hline \delta \phi_{y}=60^{\circ} & \Delta \phi_{y}=\Delta \phi_{x}+90^{\circ} & \delta \phi_{y}=60^{\circ} & \delta \phi_{y}=60^{\circ}
\end{array}
$$

- One 60° triplet: $\tilde{H}=\frac{9}{2}\left[k_{x} J_{x}^{2}+k_{y} J_{y}^{2}-4 k_{x y} J_{x} J_{y}-2 k_{x y} J_{x} J_{y} \cos \left(2 \psi_{x}-2 \psi_{y}\right)\right]$
- Two triplets = six-pack

$$
\tilde{H}=9 k\left[\beta_{x}^{2} J_{x}^{2}+\beta_{y}^{2} J_{y}^{2}-4 \beta_{x} \beta_{y} J_{x} J_{y}\right]
$$

- Need three six-packs with different $\beta_{\mathrm{x}} / \beta_{\mathrm{y}}$

180612, PSI

V. Ziemann: Hamiltonians and Lie-maps

- Task: Find sextupole knobs to address thirdorder geometric aberrrations with the least excitation. Avoid fighting correction elements!

$$
\begin{aligned}
H= & k \beta^{3 / 2}\left(x \cos \phi-x^{\prime} \sin \phi\right)^{3} \\
H= & \frac{k}{4}\left[\cos (3 \phi)(2 J \beta)^{3 / 2} \cos (3 \psi)+\sin (3 \phi)(2 J \beta)^{3 / 2} \sin (3 \psi)\right. \\
& \left.+3 \cos (\phi)(2 J \beta)^{3 / 2} \cos (\psi)+3 \sin (\phi)(2 J \beta)^{3 / 2} \sin (\psi)\right]
\end{aligned}
$$

Democratic treatment of all resonance driving terms, if condition number $\left(\lambda_{\max } / \lambda_{\text {min }}\right.$) of matrix is unity.
\rightarrow Parsimonious knobs
45° phase advance between sextupoles achieves that

Two-dimensional sextupole knobs

UNIVERSITET

Sextupoles	$\Delta \phi_{x}$ [degr.]	$\Delta \phi_{y}$ [degr.]
$1-2$	135°	45°
$2-3$	135°	45°
$3-4$	135°	45°
$4-5$	180°	90°
$5-6$	135°	45°
$6-7$	135°	45°
$7-8$	135°	45°

works in TME cells

$\left[\begin{array}{cccc}\cos \left(\phi_{x 1}-2 \phi_{y 1}\right) & \cos \left(\phi_{x 1}-2 \phi_{y 1}\right) & \ldots & \cos \left(\phi_{x N}-2 \phi_{y N}\right) \\ \sin \left(\phi_{x 1}-2 \phi_{y 1}\right) & \sin \left(\phi_{x 2}-2 \phi_{y 2}\right) & \ldots & \sin \left(\phi_{x N}-2 \phi_{y N}\right) \\ \cos \left(\phi_{x 1}+2 \phi_{y 1}\right) & \cos \left(\phi_{x 1}+2 \phi_{y 1}\right) & \ldots & \cos \left(\phi_{x N}+2 \phi_{y N}\right) \\ \sin \left(\phi_{x 1}+2 \phi_{y 1}\right) & \sin \left(\phi_{x 2}+2 \phi_{y 2}\right) & \ldots & \sin \left(\phi_{x N}+2 \phi_{y N}\right) \\ \cos \left(3 \phi_{x 1}\right) & \cos \left(3 \phi_{x 2}\right) & \ldots & \cos \left(3 \phi_{x N}\right) \\ \sin \left(3 \phi_{x 1}\right) & \sin \left(3 \phi_{x 2}\right) & \ldots & \sin \left(3 \phi_{x N}\right) \\ \cos \left(\phi_{x 1}\right) & \cos \left(\phi_{x 2}\right) & \ldots & \cos \left(\phi_{x N}\right) \\ \sin \left(\phi_{x 1}\right) & \sin \left(\phi_{x 2}\right) & \ldots & \sin \left(\phi_{x N}\right)\end{array}\right]$ ParsimoniOus knobs minimize contributions

Turn off one resonance near $Q_{x}+2 Q_{y}$

Rotate horiz-phase space $Q_{x}=0.317, Q_{y}=0.415$

V. Ziemann: Hamiltonians and Lie-maps

Measuring Hamiltonian Coefficients... VZ, Part. Acc. 55 (1996) 419

- Idea: low-frequency $\left(\sim f_{0} / 100\right)$ wobble $(2 h+2 v)$ steerers and observe mixing frequencies on (2h+2v) BPMs.
- Harmonic distortion of closed orbit (simulations done with LEP lattice)
- Need to remove fundamental driving frequency (notch f.)

Theory

- One-turn effect of perturbation

$$
\vec{x}_{\text {final }}=e^{:-H:} R\left(\vec{x}_{\text {initial }}+\vec{\varepsilon}\right)
$$

- Periodic solution to first order in the Hamiltonian

$$
\vec{x}=(1-R)^{-1}[R \vec{\varepsilon}-: H:(R(\vec{x}+\vec{\varepsilon}))]
$$

- Parametrize effect of Hamiltonian with $a_{\alpha j k^{\prime}} z=m^{(2)}$

$$
: H: x_{\alpha}=\left[H, x_{\alpha}\right]=\sum_{j=1}^{20} \sum_{k=1}^{10} a_{\alpha j k} h_{j} z_{k}
$$

- Solve perturbatively
signal amplitude at

$$
\vec{x}=\vec{x}_{0}+\sum_{i=1}^{4} \vec{x}_{1, i} \sin \omega_{i} t+\sum_{j=1}^{16} \vec{x}_{2, j} \cos \tilde{\omega}_{j} t
$$

Results

- Linear dependence of 4×17 BPM signals s_{i} on the 20 Hamiltonian coefficients h_{j} :

$$
s_{i}=\sum_{j} T_{i j} h_{j}
$$

- Invert $h_{j}=\left(\left(T^{t} T\right)^{-1} T^{t}\right)_{j i} s_{i}$
- Only upright sextupoles
- 10 aberrations
- BPM errors ($0-30 \mu m$)
- 1/sqrt(Nturn)

Normal Forms, Motivation

- Start with map M represented as $e^{-H} R$ (:::no more colons:::)
- and assume that the map goes from NPS to NPS
- Then R is a rotation matrix
- Task: express M in terms of physically relevant quantities
- Require representation/decomposition of M in the form

$$
e^{-H} R=e^{-K} e^{-c} R e^{K} \quad \text { "diagonalization" }
$$

- C is required to depend only on the action variables $J_{x}=\left(x^{2}+x^{12}\right) / 2$ and $J_{y}=\left(y^{2}+y^{\prime \prime}\right) / 2$ and is called the non-linear tune-shift hamiltonian
- Action dependent tune-shift
- e^{k} maps into the generalized normalized phase space
- Non-resonant normal forms
- There is also a resonant normal form

Non-resonant Normal Form

- Rewrite normal form condition:

$$
e^{-H} R=e^{-K} e^{-C} R e^{K}
$$

- Put e^{-k} on other side and multiply by $1=R^{-1} R$

$$
e^{-H} \underbrace{R e^{-K} R^{-1}} R=e^{-K} e^{-C} R \quad e^{-H} R e^{-K} R^{-1}=e^{-K} e^{-C}
$$

- Use: $\mathrm{Re}^{-K} \mathrm{R}^{-1}=\mathrm{e}^{-\mathrm{Sk}}$

$$
e^{-H} e^{-S K}=e^{-K} e^{-C}
$$

- Solve order by order

$$
\begin{aligned}
H & =H^{(3)}+H^{(4)}+H^{(5)} \\
K & =K^{(3)}+K^{(4)}+K^{(5)} \\
S K & =S^{(3)} K^{(3)}+S^{(4)} K^{(4)}+S^{(5)} K^{(5)}
\end{aligned}
$$

- Solve for the tuneshift polynomial C and the transformation K

Third order

- Just keep terms of third order

$$
e^{-H^{(3)}} e^{-S^{(3)} K^{(3)}}=e^{-K^{(3)}} e^{-C^{(3)}}
$$

- Application of CBH on left and right side yields the exponents

$$
H^{(3)}+S^{(3)} K^{(3)}=K^{(3)}+C^{(3)}+\text { higher orders }
$$

- Solving for $K^{(3)}$ results in

$$
\left(1-S^{(3)}\right) K^{(3)}=H^{(3)}-C^{(3)}=H^{(3)}
$$

- because the is no tune shift term $C^{(3)}$ in third order
- We find for the polynomial K in third order

$$
K^{(3)}=\left(1-S^{(3)}\right)^{-1} H^{(3)}
$$

Fourth order

- Write down the equation for C and K to fourth order

$$
e^{-H^{(3)}-H^{(4)}} e^{-S^{(3)} K^{(3)}-S^{(4)} K^{(4)}}=e^{-K^{(3)}-K^{(4)}} e^{-C^{(4)}}
$$

- apply CBH and collect terms

$$
\begin{aligned}
H^{(3)} & +H^{(4)}+S^{(3)} K^{(3)}+S^{(4)} K^{(4)} \\
& +\frac{1}{2}\left[H^{(3)}+H^{(4)}, S^{(3)} K^{(3)}+S^{(4)} K^{(4)}\right]+\ldots \\
& =K^{(3)}+K^{(4)}+C^{(4)}+\frac{1}{2}\left[K^{(3)}+K^{(4)}, C^{(4)}\right]+\ldots
\end{aligned}
$$

- Only those are of fourth order

$$
H^{(4)}+S^{(4)} K^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]=K^{(4)}+C^{(4)}
$$

- solve for $K(4)$ and $C(4)$

$$
\left(1-S^{(4)}\right) K^{(4)}+C^{(4)}=H^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]
$$

Trouble in Paradise (4th order)

- $\left(1-S^{(4)}\right)$ is not invertible, because it has three zero eigenvalues with eigenvectors corresponding to the polynomials

$$
\left(x^{2}+x^{12}\right)^{2},\left(y^{2}+y^{12}\right)^{2},\left(x^{2}+x^{12}\right)\left(y^{2}+y^{12}\right)
$$

- Invert $\left(1-S^{(4)}\right)$ by Singular Value Decomposition which projects out the nullspace, which can be put into $C^{(4)}$. Remember that the tuneshift polynomial C contains action variables which are just those $J_{x}=\left(x^{2}+x^{\prime 2}\right)$ and $J_{y}=\left(y^{2}+y^{\prime 2}\right)$

All well in Paradise

- Solve by SVD

$$
\left(1-S^{(4)}\right) K^{(4)}+C^{(4)}=H^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]
$$

- Project out the invariant tuneshift component

$$
C^{(4)}=\hat{P}_{\lambda=0}\left(H^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]\right)
$$

- and invert the rest by SVD tricks

$$
K^{(4)}=\mathcal{O}_{2} " \Lambda^{-1 "} \mathcal{O}_{1}^{T}\left(H^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]\right)
$$

- Gauge invariance: adding $\mathrm{K}^{\prime}=\mathrm{K}^{\prime}($ nullspace $)$ to $\mathrm{K}^{(4)}$ does not change anything
- $\mathrm{K}^{(4)}$ is only determined modulo nullspace
- 'Fix the gauge' by choosing zero projection to nullspace of $K^{(4)}$

What have we gained in this tour-de-force on Hamiltonians?

- Hamiltonians help us to understand aberrations and their cancellations
- Useful for constructing knobs
- Measuring Hamiltonians
- Normal forms allow us to calculate action dependent tune-shift and phase-space distortion
- Hamiltonians help to 'think beam lines'

Backup slides follow

UPPSALA UNIVERSITET

- Hamiltonian kick

$$
\begin{aligned}
& \bar{x}_{1}=e^{:-H:} x_{1}=\left(1-: \theta x_{1}:\right) x_{1}=x_{1}-\theta\left[x_{1}, x_{1}\right]=x_{1} \\
& \bar{x}_{1}^{\prime}=e^{:-H:} x_{1}^{\prime}=\left(1-: \theta x_{1}:\right) x_{1}^{\prime}=x_{1}-\theta\left[x_{1}, x_{1}^{\prime}\right]=x_{1}^{\prime}-\theta
\end{aligned}
$$

- Traditional way

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\binom{\bar{x}_{1}}{\bar{x}_{1}^{\prime}}=\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{1}^{\prime}-\theta}=\binom{x_{1}+L x_{1}^{\prime}-L \theta}{x_{1}^{\prime}-\theta}
$$

- Hamiltonian way: need the transformation

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{1}^{\prime}}=\binom{x_{1}+L x_{1}^{\prime}}{x_{1}^{\prime}} \rightarrow\binom{x_{1}}{x_{1}^{\prime}}=\binom{x_{2}-L x_{2}^{\prime}}{x_{2}^{\prime}}
$$

Pushing a dipole kick 2

- The pushed hamiltonian (just express the old one in the new variables)

$$
\tilde{H}\left(x_{2}, x_{2}^{\prime}\right)=H\left(x_{1}, x_{1}^{\prime}\right)=\theta x_{1}=\theta\left(x_{2}-L x_{2}^{\prime}\right)
$$

- Check that it does the right thing

$$
\begin{aligned}
\bar{x}_{2} & =e^{:-\tilde{H}:} x_{2}=\left\{1-: \theta\left(x_{2}-L x_{2}^{\prime}\right):\right\} x_{2}=x_{2}-\theta\left[x_{2}-L x_{2}^{\prime}, x_{2}\right] \\
& =x_{2}+L \theta\left[x_{2}^{\prime}, x_{2}\right]=x_{2}-L \theta=x_{1}+L x_{1}^{\prime}-L \theta \\
\bar{x}_{2}^{\prime} & =e^{: \tilde{H}:} x_{2}^{\prime}=\left\{1-: \theta\left(x_{2}-L x_{2}^{\prime}\right):\right\} x_{2}^{\prime}=x_{2}^{\prime}-\theta\left[x_{2}, x_{2}^{\prime}\right] \\
& =x_{2}^{\prime}-\theta=x_{1}^{\prime}-\theta
\end{aligned}
$$

- Agrees with the directly calculated values on the previous slide
- Exchanged the kick and the linear transport!

Example: Coupling

\vec{x}_{0}

$$
H_{1}=\frac{1}{f_{1}} x_{1} y_{1}
$$

NPS

- Consider linear uncoupled beam line with extra skew quadrupoles
- Pushing all skew quads to the left

$$
\mathcal{M}=e^{:-\tilde{H}\left(x_{0}, x_{0}^{\prime}, y_{0}, y_{0}^{\prime}\right):} R
$$

- Ten coefficients in the hamiltonian

$$
\begin{aligned}
-\tilde{H}\left(x_{0}, x_{0}^{\prime}, y_{0}, y_{0}^{\prime}\right)= & h_{1} x_{0}^{2}+h_{2} x_{0} x_{0}^{\prime}+h_{3} x_{0} y_{0}+h_{4} x_{0} y_{0}^{\prime}++h_{5} x_{0}^{\prime 2} \\
& h_{6} x_{0}^{\prime} y_{0}+h_{7} x_{0}^{\prime} y_{0}^{\prime}+h_{8} y_{0}^{2}+h_{9} y_{0} y_{0}^{\prime}+h_{10} y_{0}^{\prime 2}
\end{aligned}
$$

- horizontal coefficients h_{1}, h_{2}, h_{5} and vertical coefficients $h_{8^{\prime}} h_{9}, h_{10}$ lead to tuneshift and beta-beat
- four coupling elements $h_{3}, h_{4}, h_{6}, h_{7} \rightarrow$ resonance driving terms for sum and difference resonance ($\sigma_{c^{\prime}} \sigma_{s^{\prime}} \Delta_{c^{\prime}} \Delta_{s}$)

Coupling 2

- Consider the two of the coupling terms only

$$
\begin{aligned}
h_{3} x_{0} y_{0}+h_{7} x_{0}^{\prime} y_{0}^{\prime}= & h_{3} \frac{1}{2} \sqrt{2 J_{x} 2 J_{y}}\left(\cos \left(\psi_{x}-\psi_{y}\right)+\cos \left(\psi_{x}+\psi_{y}\right)\right) \\
& +h_{7} \frac{1}{2} \sqrt{2 J_{x} 2 J_{y}}\left(\cos \left(\psi_{x}-\psi_{y}\right)-\cos \left(\psi_{x}+\psi_{y}\right)\right)
\end{aligned}
$$

- Resonance driving terms for the sum an difference resonance
- $2 \pi \sigma_{c}=\frac{1}{2}\left(h_{3}-h_{7}\right) \quad, 2 \pi \Delta_{c}=\frac{1}{2}\left(h_{3}+h_{7}\right)$
- and similarly for the other (sine) phase
- Remark: The minimum tune separation ΔQ in a closest-tune scan that is done to measure the coupling is given by

$$
\Delta Q=\sqrt{\Delta_{c}^{2}+\Delta_{s}^{2}}
$$

