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and Normal Forms 
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Outline
● Motivation
● Hamiltonian Mechanics and Maps
● Examples of Lie maps
● Pushing Lie maps around
● Concatenating Lie-maps
● Resonance driving terms
● Several applications
● Normal Forms
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Non-linearities

● Unwanted non-linearities from 
magnet fringe fields or magnet 
errors

● Sextupoles are needed for 
chromaticity correction if the 
quadrupoles are very strong

● Octupoles needed to add tune 
spread to provide Landau-
damping against instabilities

● Beam stability at large amplitudes 
→ Dynamic Aperture

● Can we place multipoles such 
that they 'cancel'?

● Distortions 

● Dynamic aperture

● Sometimes islands



180612, PSI V. Ziemann: Hamiltonians and Lie-maps 4

Power Series

● Linear transport described by transfer matrices

● Sextupole kicks:      x' ← x' - k
2
L x2/2

● Inserting polynomials into polynomials into polynomials into 
polynomials into polynomials......

● Differential Algebra codes (M. Berz's COSY-∞)

● Huge (automatized) book-keeping exercise up to a given order

● Power series truncation breaks symplecticity of the map

● Redundant representation, 2x2-TM has 3 independent 
components, but requires 4 stored numbers

● Does not directly provide 'understanding'  of cancellations
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Hamiltonians
● Hamiltonians to the rescue
● Consider that there are 3 independent 

monomials of 2nd order: x2, xx', x'2

● Coefficients h
i
 describe aberrations

– Non-redundant representation

● Remember quantum mechanics where the 
hamiltonian is the generator of the motion in time

– It pushes the wave-function or state-vector 
forward in time
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Hamilton's Equations 
● In mechanical systems Hamilton's equations 

determine trajectory x(t)

● Consider the rate of change of a function f(x,x')

● Other Nomenclature:  
– A Lie-operator is a Poisson bracket waiting to 

happen
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Finite steps and Lie-Maps

● Powers of PB

● Allows to write Taylor-series

● that describes transport over finite time step
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Hamiltonians for Multipoles
● Magnetic fields for thin-lens multipoles can be 

derived from a complex potential

● Consistent with notation and w(z)=i dF/dz

● Integrate of length and scale with momentum 
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Example: Thin Sextupole
● Hamiltonian: H = (K

2
L/6)(x3-3xy2)   

● Map M = e:-H: = (1+ :-H: + :-H:2/2! + ...)

● Exponential series truncates

● Complete map

● Well-known kicks
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Drift space and Quadrupole

● Equation of motion
● Derive from Hamiltonian
● Calculate PB for x and x'

● and for powers of 
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Drifts and quadrupoles 2

● Calculate for finite step size s

● same as first line of transfer matrix for quad
● Drift matrix for k → 0
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Pushing Hamiltonians around...
● Nothing really gained yet, just shown that hamiltonians yield well-

known maps → No new functionality, yet!

● Problem: If two elements (magnets) live at different places in a 
beamline, their Hamiltonians depend on different variables

● Solution: Push all Hamiltonians to a reference point, normally at 
the end of the beam line (Idea due to J. Irwin, SLAC)

    M = R e:-H(x1): = (R e:-H(x1):R-1) R =(non-trivial)= e:-H(Rx1): R = e:-H(x2): R

● Push a hamiltonian to the reference point with a similarity 
transform by changing its variables to those of the reference 
point. This makes the effect of the Hamiltonians commensurate.
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Aside: Pushing with Software
● 1st order: 

● 2nd order:

● Analogous in higher orders, coded up to 5th (decapole) order
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...and it in practice
● Drift space with length L
● First order (corrector magnets)

● Third order (sextupoles) 

● Automatic with help of two book-keeping arrays
➔ ii=MM(n+10*m), position of h

ii
 with x

n

 x'
m

➔ n=MO(jj,1), power n of x
n

 in monomial jj

S
(1)

S
(3)
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...and in Matlab 

Set up book-keeping arrays

Construct the matrices
S(1),S(2),...

Propagate 
Hamiltonian
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Pushing to a Reference Point
● Consider beamline with two elements

● NPS=normalized phase space

● Map

● Both multipoles pushed to the end plus linear transport
– exact representation; only linear change of variables; generalize to more elements; 

all have the same independent variables; caveat about ordering of Lie maps
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Concatenation

● Concatenate with Campbell-Baker-Hausdorff (CBH) formula

● Interpretation: H is traversed before K, left to right, different 
from matrices!

● Step through beam line and concatenate the next element to 
what is already there

● It is mandatory that H and K depend on the same variables, 
otherwise: what does [H,K] mean?

● Contains effect of three interacting elements consistently

● Symplectic representation of the full map: 

    M = e:-H: R    →   Super-duper-pop-up kick + linear map
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...and in practice
● Poisson bracket of two monomials

● Easy to code with the                                         
help of MM and M0 
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Example: Placement of Sextupoles

● Two sextupoles with equal strength at places with equal beta function

● Push both to the end of the beam line

● H
both

=x
0

3+(x
0
cosφ-x'

0
sinφ)3 + 1/2[x

0

3,(x
0
cosφ-x'

0
sinφ)3] + ...

● Cancels to all orders, if φ=180 degrees phase advance

● What happens with interleaved sextupoles (as in SLC-FF)?

● Sextupole order cancels pairwise, but octupole-order aberrations 
appear by PB of  the empty and full dots.

– and you can explicitely calculate what octupole aberrations appear 
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Resonance Driving Terms
● H(x

0
,x'

0
,y

0
,y'

0
) is given in variables of normalized phase space

● Introduce action-angle variables

● Collect terms proportional to cos/sin(mψ
x
±nψ

y
)

● Example: 1-D sextupole already at the end of beam line

Can be done for resonances
of any order

H has information about all
resonances in the beam line

M = e:-H: R
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Example: Global Knobs
● Hamiltonian representation has the advantage that each 

coefficient represents an independent aberration. There is no 
redundancy among coefficients (unlike Taylor-maps).

● To first order in CBH, coefficients in the Hamiltonian are linear in 
the magnet excitations k

n
L. Linear combinations of magnet 

excitations that control a single coefficient of the hamiltonian 
only, are easily constructed by matrix inversion

                            →    Knobs
● Numerology for the geometric aberrations in 2D

– 1st order: 4 aberrations  → 4 steering dipoles

– 2nd order: 10 = 2x3+4  → 4 skew quads

– 3rd order: 2 x 10, half upright, half skew sextupoles

– 4th order: 35 aberrations, octupoles

– 5th order: N ((N+1)/2) ((N+2)/3) ((N+3)/4) ((N+4)/5) = 56 aberrations
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Compensating amplitude-dependent tune-shift without driving 
fourth-order resonances, J. Ögren, VZ, NIM A869 (2017) 1

● Question: Can we place octupoles to only 
cause amplitude-dependent tune-shift, but no 
other aberrations? [sin or cos(2 Q

x
+2 Q

y
)]

● Two octupoles, 1D

● Four octupoles, 1D

We want the Hamiltonian to 
only depend on 2J=x

2

+x'
2

. 

Can achieve this with four
octupoles equally excited, 
provided 45

o

 inbetween.

But φ
1
=0 also works with three 

equally excited octupoles
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2D octupoles

● One 60
o

 triplet:
● Two triplets = six-pack

● Need three six-packs with different β
x
/β

y

Use Smear
as f.o.m
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Optimum resonance control knobs for sextupoles, 
J. Ögren, VZ, NIM A894 (2018) 111 

● Task: Find sextupole knobs to address third-
order geometric aberrrations with the least 
excitation. Avoid fighting correction elements!

Democratic treatment of all resonance
driving terms, if condition number 
(λ

max
/λ

min
) of matrix is unity.

    → Parsimonious knobs

45
o

 phase advance between sextupoles 
achieves that
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Two-dimensional sextupole knobs
Turn off one resonance
near Q

x
+2Q

y

Rotate horiz-phase space
Q

x
=0.317, Q

y
=0.415

Parsimonious knobs
minimize contributions
to higher orders!

works in TME cells
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Measuring Hamiltonian Coefficients...
VZ, Part. Acc. 55 (1996) 419

● Idea: low-frequency (~f
0
/100) wobble (2h+2v) steerers 

and observe mixing frequencies on (2h+2v) BPMs.

● Harmonic distortion of closed orbit (simulations done with 
LEP lattice)

● Need to remove fundamental driving frequency (notch f.)
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Theory
● One-turn effect of perturbation

● Periodic solution to first order in the Hamiltonian

● Parametrize effect of Hamiltonian with a
αjk

, z=m
(2) 

● Solve perturbatively

mixing frequencies

signal amplitude at
harmonic
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Results

● Linear dependence of 4x17 BPM signals s
i
 on 

the 20 Hamiltonian coefficients h
j
:  

● Invert
● Only upright sextupoles

– 10 aberrations

● BPM errors (0-30μm)

● 1/sqrt(Nturn)
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Normal Forms, Motivation
● Start with map M represented as  e-H R  (:::no more colons:::)

● and assume that the map goes from NPS to NPS

– Then R is a rotation matrix
● Task: express M in terms of physically relevant quantities

● Require representation/decomposition of M in the form

                    e-H R = e-K e-C R eK               “diagonalization”

– C is required to depend only on the action variables J
x
=(x2+x'2)/2  and  

J
y
=(y2+y'2)/2 and is called the non-linear tune-shift hamiltonian

– Action dependent tune-shift

– eK maps into the generalized normalized phase space

– Non-resonant normal forms

– There is also a resonant normal form

eK
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Non-resonant Normal Form
● Rewrite normal form condition: 

● Put e
-K

 on other side and multiply by 1=R-1R 

● Use: R e-KR-1 = e-SK

● Solve order by order

● Solve for the tuneshift polynomial C and the transformation K
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Third order
● Just keep terms of third order 

● Application of CBH on left and right side yields the exponents

● Solving for K(3) results in

● because the is no tune shift term C
(3)

 in third order

● We find for the polynomial K in third order
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Fourth order
● Write down the equation for C and K to fourth order

● apply CBH and collect terms

● Only those are of fourth order

● solve for K(4) and C(4)
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Trouble in Paradise (4th order)

● (1-S(4)) is not invertible, because it has three 
zero eigenvalues with eigenvectors 
corresponding to the polynomials

          (x2+x'2)2, (y2+y'2)2, (x2+x'2)(y2+y'2)

● Invert (1-S(4)) by Singular Value Decomposition 
which projects out the nullspace, which can be 
put into C

(4)

. Remember that the tuneshift 
polynomial C contains action variables which 
are just those J

x
=(x2+x'2) and J

y
=(y2+y'2)
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All well in Paradise

● Solve by SVD

● Project out the invariant tuneshift component

● and invert the rest by SVD tricks

● Gauge invariance: adding K' = K'(nullspace) to K(4) does not 
change anything

– K(4) is only determined modulo nullspace

– 'Fix the gauge' by choosing zero projection to nullspace of  K(4)

Amplitude-dependent
tune shift: C

(4)
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What have we gained in this 
tour-de-force on Hamiltonians?

● Hamiltonians help us to understand 
aberrations and their cancellations

● Useful for constructing knobs
● Measuring Hamiltonians
● Normal forms allow us to calculate action 

dependent tune-shift and phase-space 
distortion 

● Hamiltonians help to 'think beam lines'



180612, PSI V. Ziemann: Hamiltonians and Lie-maps 36

Backup slides follow
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Example: Pushing a dipole kick

● Hamiltonian kick

● Traditional way

● Hamiltonian way: need the transformation



180612, PSI V. Ziemann: Hamiltonians and Lie-maps 38

Pushing a dipole kick 2
● The pushed hamiltonian (just express the old one in the new 

variables)

● Check that it does the right thing

● Agrees with the directly calculated values on the previous slide

● Exchanged the kick and the linear transport!
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Example: Coupling

● Consider linear uncoupled beam line with extra skew quadrupoles

● Pushing all skew quads to the left

● Ten coefficients in the hamiltonian

– horizontal coefficients h
1
,h

2
,h

5
 and vertical coefficients  h

8
,h

9
,h

10
 

lead to tuneshift and beta-beat

– four coupling elements h
3
,h

4
,h

6
,h

7
 → resonance driving terms 

for sum and difference resonance (σ
c
,σ

s
,Δ

c
,Δ

s
)
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Coupling 2
● Consider the two of the coupling terms only

● Resonance driving terms for the sum an difference resonance

●

● and similarly for the other (sine) phase

● Remark: The minimum tune separation ΔQ in a closest-tune 
scan that is done to measure the coupling is given by
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