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Battery solutions for emerging applications in the power grid

Daniel Chartouni, ABB Switzerland Ltd, Corporate Research
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Agenda (30 minutes)

Application landscape and current examples

— Capacity firming (renewable integration)
— Primary Frequency Regulation

— Residential PV with battery storage

Trends and emerging applications

— Aggregated systems

Summary / Discussion



Energy storage applications
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Energy storage applications
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Example of renewable integration (capacity firming of large solar)

BESS Project Chitose Hokkaido—Japan 17 MW

Customer needs

— 28 MW PV grid integration

— Ramp rate control 1%/min—Voltage support—Capacity firming
Project details

— Li-ion batteries

- Installed in 2016

ABB scope

— (4) x4 MW + (1) x 1 MW outdoor PCS

— PCSinverters, DC contactors, AC circuit breakers
— MV-LV coupling transformer

— MV switchgear

— Local controllerintegrating PCS, switchgear and MBMS
— Local HMI
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Integration of utility scale renewables

Intermittent bulk generation

Capacity firming of intermittent
bulk generation

Renewable stabilization:

— Wind: stabilization of large
wind farms for dispatchable output

— Solar: balancing of supply
and demand (time-shifting)

Value streams

Non-renewable primary energy
savings by self consumption increase
and avoiding renewable curtailment
(Abregelung)

Fossil fuel peaker plant replacement

Regulatory requirements:
e.g. Ramp rate control 1%/min

Concepts

Dispatchable output of wind power

_ | Output from wind Combined output
v
3
@
\ /‘v W D1scharg1ng
\J \ I .
W Charglng
el
Llr\/‘, \,\\ /
/A L/
o L L \/
\/
Y
0] 12 24

Time [h]

Time-shifting of solar power

Power

Combined
Output from output
solar
2
Charging \
\
;Dlscha\ging
/)
| reem——
f \
/ /J \‘\ \ |
12 24
Time [h]
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https://www.ngk.co.jp/nas/

Example of a Sodium-Sulfur BESS to balance supply and demand

BESS in Buzen City, Fukuoka, Kyusyu, Japan

Capacity 50 MW / 300 MWh
Containers 252

Footprint 100 x 140 (M)
Construction 6 months
Commission March 2016

Grid connection 66 kV

Main purpose Capacity firming renewable energy (solar)

AR , , , , ADRD
June 4, 2019 | slides Source: Photo: Kyusyu Electric Power Co., Inc, https://www.ngk.co.jp/nas/case_studies/buzen/ MDD



https://www.ngk.co.jp/nas/case_studies/buzen/

Technology example: Sodium Sulfur (NaS) Battery

Developed for large scale utility-side applications

Typical characteristics

Discharge 4-10 hours

time

Power 200 kW -50 MW
Cycle life 4,500 full cycles,

Calendar life

15 years

Battery type

High temperature
(320°C)
Ceramic electrolyte

Advantage

Abundant base
material availability

Disadvantage

Single source (NGK),
Scaling: min 200 kW

Battery cell Module Battery container

Terminals (+) ~Battery cell
[ Terminals (-)

Fuse

(Na)

1

| Beta-

- alumina
—ceramics

Sulfur
(S)

Main pole  Thermal enclosure

2Na+xS—Na,S, (3.3<x<5)
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Technology example: Sodium Sulfur (NaS) Battery

Developed for large scale utility-side applications

Typical characteristics

Discharge 4-10 hours Battery cell Module Battery container
time
Power 200 kW -50 MW |

Cycle life 4,500 full cycles,
Calendar life  15years |
50c

Battery type  High temperature
(320°C)
Ceramic electrolyte

Advantage Abundant base
material availability -

M 33 kW /200 kWh M 200 kW / 1,200 kWh

Disadvantage Single source (NGK),
Scaling: min 200 kW
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Energy storage applications

Used today across various industry segments, behind and in front of the meter
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Primary Frequency Regulation

Primary Frequency Regulation Concept

50.02
50.00 /\f

49.98

Main purpose

— Keep the balance between electrical load and generation at any
instant in order to keep the grid frequency at the reference
value

Absorb power

— Done by using reserve power to
respond to changes in the grid frequency

Frequency

Supply power

Value stream t [sec]

— Control reserve is remunerated

— Power only: in $/kW/week

Energy

Remarks
. o . . . Charge Discharge
— Typical utility-side-of-the-meter application

— Requirement of 1 MW (minimum) and up to 50 MW t [sec]




Example of an ABB energy storage solution
Turn-key 1MW Li-ion BESS for Utility EKZ, Switzerland

Customer needs Battery 3\%‘: - //g
) i

— Frequency and voltage regulation Container =/t

— Peak shaving VAT el S

— Islanding capability Transformer

L

el

ABB Scope Inverter . ~ J
— Turn-key supplier delivering a complete storage system Couplin Inside Battery
for demonstration purposes | Ping Container

Transformer

— 1MW PCS100 converter housed in an outdoor cabinet
— Installed in 2012

Energy storage technology

— Li-ion batteries (250 kWh)

Li-ion battery Control Room PCS100 modules

modules
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Energy storage applications
Used today across various industry segments, behind and in front of the meter
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Residential homes with PV and Battery storage

End-customer application

Residential PV with battery storage

Main purpose - main motivation
- Maximizing self consumption
— Ecological mind set (support of solar energy)

— Autarchy and independency

Value stream

Difference of electricity cost
from local grid and remune-
rated price (feed-in tariff)

PV plus Battery storage
Example: REACT 2

Power [kW]

charged into battery energy

Concept [ iexported to the grid e:nergy
® imported from the grid energy
5 ® self consumed energy - discharged from battery
@ self consumed energy
4 PV production
Consumption
3
2
1
0]

O 2 4 o6 8 10 12 14 16 18 20 22 00
Time [h]
Example (May 15, 2019): REACT 2 Battery solution (3.6 kW, 4 kwh)
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http://www.speichermonitoring.de/fileadmin/user_upload/Speichermonitoring_Jahresbericht_2017_ISEA_RWTH_Aachen.pdf
http://www.abb.com/react
http://www.speichermonitoring.de/fileadmin/user_upload/Speichermonitoring_Jahresbericht_2017_ISEA_RWTH_Aachen.pdf

Increase in residential PV with battery storage (e.g. Germany)
2018, accumulated 900 MWh of PV-batteries with total power of 440 MW installed

Cumulative number of installations (2013 - 2018)

120’000
Totally installed PV-Batteries
_ 100°000 B Kfw-supported PV-Batteries
2
€ 80’000
=]
c
(4]
2 60000
)
o
S
€ 40000
>
8

20’000 I I
, = m N

2013 2014 2015 2016 2017 2018

Observation in Germany

— Main motivation for the owner

* Maximizing self consumption
» Ecological mind set (support of solar energy)
* Autarchy and independency

— 60% of the new installed PV systems have a Battery in
addition

— In total: 940 MWh, 440 MW installed decentrally (End of 2018)

in 120’000 installations
— Forecast end of 2019: 1.3 GWh, 600 MW installed


http://www.speichermonitoring.de/fileadmin/user_upload/Speichermonitoring_Jahresbericht_2017_ISEA_RWTH_Aachen.pdf
https://www.pv-magazine.de/2019/03/12/energy-storage-europe-gigawatt-marke-bei-speichern-bis-ende-2019-in-deutschland-greifbar/
https://www.pv-magazine.de/2019/05/14/eupd-research-sonnen-vor-lg-chem-und-byd-weiter-marktfuehrer-bei-photovoltaik-heimspeichern-in-deutschland/

Residential PV-Battery cost

Consideration Residential storage system offers in Germany? (Li-ion)
Observation . 2014 2015 2016 2017
— Declining cost trend to roughly = 5000
1000 $/kWh usable capacity e
S : 90th
o 4000 ¢ percentile 60% median price
Assumptions g . decline since Q4 2014
g ) o
— 250-365 cycles/year % 3000 : : 5 ;
— Lifetime: 10-15 years a 25153 8 “ .
2 S acef 8 8. o .
= 2000 é & 17713 15885 é : ® - s ®
Cost per discharged kWh < e < 8 =% —j3g¢ z - 3 = 5
) = : 2 ¢ el 170- 11217 1070%2 10172
— 1000%$/kwWh / # total cycles cg 1000 10th : . 5 : s I ——e—l0l7g
- 0.18-0.40 $/kWh © percentile ¢ J e . 5 . s :
o
o 0
Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1



Residential PV with batteries

Observation

— Today, more than 60% of new residential PV installations have a

battery in addition

— Batteryis in most cases under-utilized in terms of cycling®: average
installation is 250 cycles/year, i.e. 3750 cycles within 15 years

GE

Primary Frequency
Regulation
1-50 MW

o)

PV self-
consumption
1-50 kW
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Development
— From stand-alone product to integrated energy

management system (multi-use concept with heat

pump, EV charging, load management, etc.)

- From stand alone to cloud connected, aggregated

systems

Heat storage
HP




Emerging applications with aggregated systems
Example of current discussions: PV-batteries used for primary frequency regulation?

Combination of: Absorb
. . . sor ower
PV self-consumption AND primary frequency regulation > 50.02 /‘/\/\ "
c: .
. . [0
For Prl.mary Frequency r?gulatlon 3 50.00 /\f
— Service has to be provided for a week L&: 49.98

— Delivered in positive and negative direction Supply power

— 30 minute criteria for prequalification
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Emerging applications with aggregated systems
Example of current discussions: PV-batteries used for primary frequency regulation?

Combination of: Absorb
. . . sor ower
PV self-consumption AND primary frequency regulation > 50.02 /‘/\/\ "
C .
. . [0
For Prl.mary Frequency r?gulatlon 3 50.00 /\f
— Service has to be provided for a week L&: 49.98
— Delivered in positive and negative direction Supply power

— 30 minute criteria for prequalification

~~~~~~~~~~ N —U:O:U_I
Usab!e N Usab!e Usable ) - ﬁ )
capacity capacity capacity é@ h eat storage L s
Reserved VAN 4 —
~~~~~~~~~~ Reserved é]
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Emerging applications with aggregated systems
Example of current discussions

Combination of:
PV self-consumption AND primary frequency regulation

For Primary Frequency regulation

Battery stress factor: average cycling conditions

Primary Frequency Regulation PV-BESS (self consumption)

— Service has to be provided for a week 100 100
6 .G
. N oy . . N . >
— Delivered in positive and negative direction 25 104 \_\" % 2% 1o+
QD - U o«
— 30 minute criteria for prequalification >3 102 33
(D] [ONe]
L_L % 10-3 L—L f_j 103
e LWL £
(e) 10-4 . II II (o) 10- 4
Heat 0 025 05 0.75 1 0.25 O 5 O 75
__=— Soc Soc
o
Reserved (SN
- Typical full equivalent cycles (FEC) Typical full equivalent cycles (FEC)
Usable ; Usable Usable for PFR: for PV-BESS:
capacity capacity capacity 200-250 cyclesqgc /year 250-365 cyclesgg- /year
y Fec /Y FEC
Reserved
~~~~~~~~~~ Reserved
No PFR PFR PFR
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Emerging applications with aggregated systems
Example of current discussions

Battery stress factor: average state of charge! (SoC) Battery stress factor: average cycling conditions
100 - Primary Frequency Regulation PV-BESS (self consumption)
c 100 c 100
- 80 72.5 3.0 - | 32 A
FE. 66.5 S ® 101 |\> S E 101 | {&5] |
@) S50 B =)
g 607 g0 10? g0 1
45.0 e 2o
@ 40.0 L_L — -3 L_L - 3
© 40" 304 " on x$ || li x?
0 su\”"‘ o¢ ° 10+ | © 104
= \§-con 0 025 05 0.75 1 0.25 0.5 075 1
< 20" py =
SoC SoC
0 Typical full equivalent cycles (FEC) Typical full equivalent cycles (FEC)
Okw 1 kW 2 kW 3 kW 4 kW 5 kW 6 kW 7 kW 8 kW for PER: for PV-BESS:
Example with a 10 kWp PV-system and 10 kWh PV-Battery 200-250 cyclesggc /year 250-365 cyclesgg. /year

In this example battery life is almost unchanged up to 5 kW PFR due to two compensating effects:

higher average SoC (reduction in lifetime) vs. more favorable cycling conditions (increase in life time)

©ABB Source: Left: [1] Adapted from Fig 6 in: Georg Angenendt et. al, RWTH Aachen, “Einfluss der zusatzlichen Nutzung von PV-Batteriespeichern zur 'y
June 4, 2019 | Slide26 Regelenergiebereitstellung auf die Batteriealterung”, available at: https://www.researchgate.net/publication/326919932. Right: Holger H. Hesse Ial J
et. al, TU Munich, “Topology and Efficiency Analysis for Utility-Scale Battery Storage Systems”, IRES 2019



Emerging applications with aggregated systems
Example of current discussions

Combination of:

PV self-consumption AND primary frequency regulation
Discussion:
— The combination seems technically viable

— Participation on the control reserve markets can enhance
economics of integrated homes

- Integrated homes become more and more economically
feasible

Challenges: ; @
: : EiE

— Decreasing remuneration of control reserve

— Costs for market participation and communication

— Allocation of revenues due to regulatory issues
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Vision: The future is Solar — with Batteries

Example: Kapaia installation in 2017, Hawaii, USA

- 13 MW Solar PV, 52 MWh Li-ion battery
— Application: power generation on an island grid

— Completed by Tesla in 2017, awarded a 20 year contract
at 13.9 cents/kWh

— Lower than cost of local diesel (15.5 cents/kWh), and
half what consumers paid in Dec 2016 (27.7 cents/ kWh)

: : ," = ﬁ’i'{
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https://www.bloomberg.com/news/articles/2017-03-08/tesla-completes-hawaii-storage-project-that-sells-solar-at-night

Summary

Battery storage systems are increasingly important
- Integration of intermittent renewables

- Power quality and self sufficiency

Observations

- Massive production increase of Li-lon capacities for electric vehicles
As a result: declining Li-ion battery cost

« Increase of decentralized PV-battery systems, and also increase of large scale BESS
connected to wind and solar farms

Trends / Discussion
- Aggregated systems of small distributed devices might become increasingly important
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