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Outline

• Brief introduction to the problem

• Description of BDSIM code

• Examples
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Introduction
• No accelerator perfectly contains all 

particles
― either by design tolerance (certain capture %)
― via stochastic processes (intra-beam scattering, 

beam-beam, collective effects)
• High energy particles lead to many 

secondary particles
― photons, e-, e+, nuclear fragments, exotic unstable 

particles, etc.
― one initial particle leads to many ('infrared 

divergence')
• Beam loss leads to:

― detector background
― energy deposition
― heat loads, possibly in cryogenic equipment
― radio-activation and damage (possible deformation)

• Prediction and control of beam losses 
is crucial to both the accelerator and 
experiment operation

1x 10 GeV e- in copper
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Beam Loss
• Cut-through of accelerator
• Particle impacts aperture at some point
• Secondary particles and radiation propagate some distance
• Energy deposited in many components

Detector

impact scattering EM shower energy deposition secondaries
reach

detector

quadrupole quadrupole sector bend

beam
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Secondary Beam

• Secondary particle production from impact with target
• All of beam impacts target
• Both beams transported in magnets afterwards

target secondary
production

secondary beam

beam interaction in magnets

quadrupole
dipole

experiment

dump

further magnets
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Accelerator Tracking

• Electromagnets used to guide particles
― variety of types, each with different strengths

• Specific fields can have specific solutions
• Require physical accuracy and strict energy conservation
• For any arbitrary B / E field use numerical integration

― however, slower and limited accuracy
― not useful for many thousands of operations - error increases

Example Poincaré map through
nonlinear fields
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Particle Physics Processes

• Large variety of particles
• Large variety of processes & models

― some data based, some pure model based, some mixed
― different models for different energy ranges

• Available libraries - FLUKA, Geant4, MARS



8

Existing Solutions

• Specialised codes for accelerator tracking or radiation 
transport models

• Current solutions use a variety of approaches:
― track up to impact on aperture
― simulate most relevant parts separately - pass between codes

Accelerator Tracking

• SixTrack
• PTC / MADX
• Transport
• Lucretia

Radiation Transport

• FLUKA
• Geant4
• MARS
• MCNPX
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Which Physics Package?

• Geant4
― open source C++ class library
― no executable program
― conceived to simulate particle 

detector response
― extensive particle physics models
― regularly updated ~ every 6 

months
― used by detector community

Geant4 example of proton hitting calorimeter

http://geant4.web.cern.ch

• FLUKA
― ASCII input
― also extensive particle physics models
― used by radiation shielding community
― closed source Fortran
― highly restrictive licence
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Complexity…

• Creating 3D model of an accelerator is laborious
• Many people many years work
• Hard coded to that application
• Complex to create and validate

• Tracking codes complex in implementation
• Speciality can vary depending on application

• rarely do people therefore make such a model…
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• Create 3D Geant4 model from 
optical description in minutes

• Library of generic accelerator 
geometry in Geant4 C++
― you can learn a lot with generic geometry
― scalable and safe from overlaps

• MADX style input syntax in 
ASCII

• Can overlay other geometry 
and fields for more detail

• Thick lens 1st order matrices 
used for in-vacuum tracking
― replaces Geant4's 4th order Runge-Kutta

Beam Delivery Simulation
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Purpose

• Simulate beam loss and beam interaction with matter in 
a particle accelerator

• Examples:
― transport in air (affects beam size and transmission)
― beam degrader
― secondary beam transport including production in the target
― energy deposition from collimation
― detector background

• Not intended as optical design tool
― not a replacement for MADX / Transport / Sixtrack
― only particle tracking -> no matrix propagation

• Prepare model from optical description
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Example Syntax

• "GMAD"  - Geant4 + MAD
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Model Conversion
• BDSIM uses MAD(8,X) style syntax
• Can write manually, but can also convert easily
• Prepare 'flat' optical description of lattice

― here prepare MADX TFS format Twiss table

• Convert using pybdsim Python utility

• Fold in information by name - Python dictionaries
― up to user to how this information is sourced
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Geant4 Model Ingredients

• Requires definition of
― geometry
― fields
― physics processes

• Library of scalable generic geometry provided
• Matching perfect fields for each magnet provided

― ideal multipole for yoke

• Simple interface to Geant4's modular physics lists and 
reference physics lists
― modular -> "em", "ftfp_bert"
― reference physics lists are provided by Geant4 and include several modular lists

• For accelerator tracking we provide integrators for each 
magnet type
― if particle non-paraxial, we 'fall back' to a Geant4 numerical integrator (RK4)
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Generic Geometry

• Variety of styles for each component
― coils included correctly even if magnet split

• Selection of generic tunnels included

all aperture types 
from MADX available

different yoke styles

generic tunnel
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Coordinate Transforms

• Accelerator tracking uses a 
curvilinear system

• Geant4 uses 3D Cartesian 
coordinates

• Can look up transform from 
one volume to another
― ie current to world (outermost)
― level of hierarchy unknown and can vary
― geometry may not be aligned to 

coordinate system

• Use parallel geometry to 
overcome this
― different representation

• Matrix style integrators use 
transforms

xGeant

yGeant

z(s)

x(s)
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Pole Faces & Thin Elements

• Imperfections usually implemented via thin elements in 
tracking
― entrance / exit or in the middle of magnet

• Pole face rotations contribute significantly to optics
― crucial for low energy applications
― Implementation using 1st order matrix formalism Revert to Geant4 based 

integrator in non–paraxial limit. 

Angled beam pipe 
and yoke geometry as 
well as coils

Thin element for fringe field
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Physics Processes

• Huge number of physics processes in Geant4
― No one model for all particles at all energies

• Use modular physics 'lists'
― standard set of processes for application / energy range

• "G4EmStandardPhysics" for example -> electromagnetic
• hadronic, decay, muon-specific, synchrotron radiation etc.
• Only use physics required

― more processes = slower simulation
― only selection of physics processes relevant for any application
― possibility of different models for different energy ranges
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Information Reduction

• A particle physics simulation produces a potentially huge
amount of information
― coordinates of every step of every particle…

• Geant4 is 'silent' by default
― developer chooses ➞ record what's key

• Energy deposition recorded by default
• Optional samplers

― plane after each element that records all particles

• Optional trajectories
― record 'history' or particles of interest

• Event by event storage
― unlike tracking code, not 1 particle : 1 event
― crucial for correct statistical uncertainties

sampling planes after 
each element

(normally invisible)
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Output
• Use ROOT format for data

― highly suited to particle physics event by event storage 
and analysis

• Well documented and widely used
― support + community

• Scales well to very large data sets
• Specifically designed for data evolution
• Strong reproducibility

― all random number generator seeds and settings stored

structure of an output file



22

Analysis

• Analysis tool 'rebdsim' (root event BDSIM)
• Event by event analysis
• e.g. all neutrons over 20GeV that interact with collimator

― no problem!

• Simple text input for 1,2,3D histograms

'selection' is weighting
can be Boolean and or numerical

basic impact, loss and 
energy deposition analysis
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Optical Function Comparison

• Particle distribution recorded after each element (sampler)
• Calculate optical functions from particle distribution

― using (up to) 4th order moments
― full statistical uncertainty calculated too

ATF2 beta
ATF2 beta zoom

ATF2 alpha

Diamond Light Source



Adding more detail…
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Field Maps
• Equations describe pure fields
• Can overlay field map on BDSIM 

generic element
― yoke or vacuum separately or both together

• 1- 4D loading and interpolation
― nearest neighbour, linear and cubic interpolation

ideal 
sextupole

field

example field map from Poisson 2D

example interpolation
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Externally Provided Geometry

• Most devices designed in CAD
• Common desire to use CAD model for 

radiation studies
• Pieces can be converted:

― individual STL (water bag mesh) per component
― STEP file (more structure)

• Often these are too complex
― bolt holes, screws
― pieces grouped by material rather than location

• Technically possible to convert but 
often inefficient for final simulation

• Must choose level of required detail 
and how important it is Example DESY phase 

shifter with actuators
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Complex Models

• Developed Python package to process CAD models
― "pyg4ometry"

• Create mesh from STEP file
― using Open Cascade and FreeCAD (free) tools

• Smaller models more suited

Clatterbridge occular treatment nozzle

CLIC vacuum structure
from STL file
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pyg4ometry

• Python package to create Geant4 geometry
• Python class for each Geant4 primitive solid
• Combine with meshes from STL / STEP
• Exports to GDML format for use in Geant4 / BDSIM

• Creates its own mesh
• Use mesh to identify solids
• Easy to create simplified pieces

overlap detection

VTK visualiser BDSIM

hierarchy overlap
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Geometry Examples
ATF2 at KEK shielding enclosure

Cut away view of custom 
collimator for CLIC

Complex STL mesh 
test by humorous 
PhD student

Overlap identification 
with complex STL mesh



Control & Efficiency
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Beam Distribution

• Beam interaction and loss can be rare
• Interaction at 50 sigma?
• Efficiently generate required distribution
• Import beam distribution from ASCII

― compressed ASCII also accepted

variety of distributions included
using CLHEP pseudo-random 
number generator
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Secondary Particles

• Huge number of secondaries
― e.g. 104 secondaries / event  -> often 102 to 107 events simulated

• 'Infrared divergence'
• Necessary but can dominate tracking time
• Control through production 'range' cuts
• Roughly distance secondary would have to travel

― corresponds to a different energy / particle / material

Geant4 example:
500 MeV p in 

Lead sampling 
calorimeter

455 keV cut
(1.5mm range in LAr) 1.5mm range cut
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Variance Reduction - Biasing

• Even with an efficient choice of beam distribution events
of interest may be rare
― Perhaps rare due to cross-section of process

• Perhaps common but want same error bars over large 
energy range⇒ variance reduction

• Classic example beam gas (interaction per event)
• Bias inelastic proton cross-section

100 m

P=1×10-7 bar, Nitrogen @300K Primary interaction cross section 
(only) scaled by 1×1013
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Examples 
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Energy Loss

ILC 250 GeV Model
• Beam delivery system 

from BSY to IP
― Linear optics agree well
― Collimation defined by no 

synchrotron radiation hitting 
final doublets

― What about all the losses long 
the BDS

• Synchrotron radiation
― Simple test of photon emission 

from all magnetic elements
― Uses well tested and built in 

Geant4 SR model
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ILC Muon Production Example

• ILC muon production interesting 
as large distance between 
production point and IP
― Interaction in collimation system produces 

large number of muons

• Halo 
― 2×1010 electrons per bunch
― Halo is 1×10-3 of total beam
― 1/𝜀SP distribution
― x : 5 – 13 𝜎
― y : 36 – 92 𝜎
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Machine Protection

Superconducting coil:
T = 1.9 K, quench limit

~15 mJ cm-3

Proton beam: 145 MJ
(design: 362 MJ)

Factor 9.7 x 109

Fractional Loss Limit:
1 turn: 1x10-9

Continuous: 1x10-12

Damage: 1x10-6

Large Hadron Collider Collimation
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LHC Collimation
• Halo populated during beam storage
• Continually removed
• Simulate halo as it touches collimators
• LHC-style dipoles & quadrupoles
• Require 1:106 precision

B1 4TeV energy deposition map
L. Nevay, S. Walker

Example halo distribution

straight sections
betatron collimation

ATLAS

beam 1

losses in cryogenic section
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LHC Ion Collimation

• Similarly, same model can be used with ions
• Fragmentation - many fragments around nominal B𝝆

A. Abramov
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LHC Ion Collimation II

• Energy deposition around ring

A. Abramov

• Significantly more loss 
spikes around ring

• Beam intensity limit 
much lower

• Collimator impacts only  
at S = 20000m here

• Zoom of collimation section 
('IR7')

• Coded losses on collimators, 
warm and cold sections
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LHC Non-Collision Backgrounds

• Interaction with residual vacuum creates measurable 
background in ATLAS and CMS detectors

• Modelling ATLAS background using BDSIM
― last 500m of machine before ATLAS
― single pass simulation
― predict observed rates in pixel detector
― IR1 tunnel model converted from FLUKA

• Bias proton inelastic scattering with residual vacuum
― subsequent interactions with normal weighting

AT
LA
S

beam	#2

S. Walker, S. Gibson
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LHC Non-Collision Backgrounds II
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Azimuthal rate for different species

Azimuthal rate for different muon energies

Overall particle spectra at interface plane

• Particles recorded at 
'interface plane'
― start of detector cavern

• Transferred to dedicated 
ATLAS simulation

S. Walker, S. Gibson
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CLIC Post Collision Line
• Validate design for new proposed energy points
• Highly disrupted post collision beam

― simulated using GUINEA-PIG

• Synchrotron radiation significant
― leads to 2 separate beams on the dump

• Intermediate dump built using pyg4ometry package

R. Bodenstein, A. Abramov

custom intermediate dump

asymmetric vertical 
dipoles using generic 
BDSIM geometry

GDML for tapered elliptical beam pipes
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Hadron Therapy Degrader
• Use variable material depth to degrade beam energy

Based on the degrader 
design at the Center for 
Proton Therapy at PSI.

Horizontal phase 
space before (left) 
and after (right) a 
degrader.

W. Shields
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PSI Gantry II
• Optical comparison and validation

Secondaries generated from primary losses in a 
highly dispersive region at S = 41 m for the 230 
MeV beam.

Lattice publicly available: 
http://aea.web.psi.ch/Urs_Rohrer/MyFtp

230 MeV

70 MeV

Published at IPAC 2018 - MOPML061 W. Shields
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DESY XFEL Undulator Dose
• Undulator dose higher than 

original design
• Caused by secondary neutrons 

and synchrotron radiation
• BDSIM used to simulate dose in 

GDML undulator model
• Simulations compare to RADFET 

detectors on each undulator

S. Liu, I. Agapov at DESYhttps://doi.org/10.18429/JACoW-IPAC2018-THPMF022
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AWAKE Dipole Spectrometer
• Previous developer of BDSIM L. Deacon in AWAKE 

collaboration
• AWAKE dipole spectrometer added to BDSIM

― multi-layered scintillator screen

• Recently used for the calibration of the dipole
• https://www.nature.com/articles/s41586-018-0485-4
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Summary

• Strategy of combined simulation demonstrated

• Spectrum from accelerator tracking to particle physics

• Radiation simulation geometry often different from realistic 

geometry

• BDSIM is open source C++ program containing many of 

these ideas

• Ready for a lot of studies, but collaboration very welcome!
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Thank you
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Links

• paper: https://arxiv.org/abs/1808.10745
• main website: http://www.pp.rhul.ac.uk/bdsim
• manual: http://www.pp.rhul.ac.uk/bdsim/manual
• git repository: https://bitbucket.org/jairhul/bdsim/wiki/Home
• Issue tracking & feature request

― https://bitbucket.org/jairhul/bdsim/issues
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Collaborative Tools

• Public git repository
• Public issue tracker

― https://bitbucket.org/jairhul/bdsim/issues
― also for feature requests

• Complete Doxygen documentation for C++
― http://www.pp.rhul.ac.uk/bdsim/doxygen/

• Detailed manual regularly updated
― http://www.pp.rhul.ac.uk/bdsim/manual/
― html & pdf
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Quality & Testing

• Open source C++ software in git repository
― https://bitbucket.org/jairhul/bdsim/wiki/Home

• Nightly testing of ~ 600 tests
― 6 builds, SLC6 & CC7
― > 90% code coverage
― regression testing


