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Advances in beamline optics, detectors and X-ray sources allow new techniques

of crystallographic data collection. In serial crystallography, a large number of

partial datasets from crystals of small volume are measured. Merging of datasets

from different crystals in order to enhance data completeness and accuracy is

only valid if the crystals are isomorphous, i.e. sufficiently similar in cell

parameters, unit-cell contents and molecular structure. Identification and

exclusion of non-isomorphous datasets is therefore indispensable and must be

done by means of suitable indicators. To identify rogue datasets, the influence of

each dataset on CC1/2 [Karplus & Diederichs (2012). Science, 336, 1030–1033],

the correlation coefficient between pairs of intensities averaged in two randomly

assigned subsets of observations, is evaluated. The presented method employs a

precise calculation of CC1/2 that avoids the random assignment, and instead of

using an overall CC1/2, an average over resolution shells is employed to obtain

sensible results. The selection procedure was verified by measuring the

correlation of observed (merged) intensities and intensities calculated from a

model. It is found that inclusion and merging of non-isomorphous datasets may

bias the refined model towards those datasets, and measures to reduce this effect

are suggested.

1. Introduction

Several bottlenecks hamper structure determination of

biological macromolecules. One practical problem is often the

lack of suitably large crystals for collection of complete high-

resolution data, as the diffraction signal for a given incident

X-ray beam is proportional to the well ordered crystal volume

illuminated by the beam, as given by Darwin’s formula

(Darwin, 1914, 1922; Blundell & Johnson, 1976). Smaller

crystals require higher X-ray beam intensities to produce

diffraction up to the same resolution as comparable crystals

with larger volume, but because of radiation damage do not

result in complete datasets.

This problem of incompleteness has been addressed by

combining several partial datasets from multiple crystals in

order to obtain a complete dataset averaged (‘merged’) over

all observations of every unique reflection. Merging of data

from a few (2–20) crystals has been standard practice in

crystallography (Kendrew et al., 1960; Dickerson et al., 1961),

but recently this concept was extended to tens or even thou-

sands of crystals with only a few reflections per dataset and

termed serial crystallography (SX). When using extremely

short pulses of X-rays, each of tens of femtoseconds in dura-

tion, generated by a free-electron laser (FEL) the method is

referred to as serial femtosecond crystallography (SFX;

Chapman et al., 2011). This also exploits the ‘diffraction before

destruction’ approach, where single diffraction ‘snapshots’ are

collected before radiation damage can occur. Serial crystal-
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lography performed at the synchrotron (SSX; Rossmann,

2014) is a more recent development based on data collection

and processing methods established for single-crystal work,

but enhanced by procedures for crystal identification by

scanning crystallization plates using conventional optics or

X-rays. This approach is also ideally suited for employing

novel crystallization setups such as the lipidic cubic phase and

in situ data collection at room or cryo temperature (Huang et

al., 2015, 2016).

Although serial crystallography, especially SFX, can in

principle solve or mitigate the problem of radiation damage

and the lack of sufficiently large crystals, one potential

obstacle is non-isomorphism of crystals. In order to merge

different partial datasets into one complete dataset, one must

ensure that all partial datasets are sufficiently isomorphous.

Isomorphous crystals are structurally identical and correspond

to the same atomic model such that datasets only differ by

random error, whereas non-isomorphous crystals represent

different structural features, at the level of cell parameters,

composition (in terms of presence of molecular entities like

ligands and solvent molecules) or molecular conformation.

The variation between datasets thus also depends on the

extent of non-isomorphism.

To group datasets on the basis of similarity, hierarchical

clustering based on pairwise correlation coefficients was

employed by Giordano et al. (2012). The basic idea here is that

a low correlation coefficient indicates unrelatedness of data-

sets, which is interpreted as non-isomorphism. This method

may also falsely reject datasets with a high level of random

error, or in other words, weak datasets. Essentially, this would

trade accuracy for precision.

Another method that can be employed is hierarchical

clustering of datasets based on their cell parameters (Foadi et

al., 2013). This method avoids the problem of false positive

rejection of weak datasets, but on the other hand similarity of

cell parameters is only a necessary but not a sufficient

condition, and does not take similarity of diffraction into

account. The criterion can therefore be considered as a rather

weak filter.

Yet another approach combines the unit-cell changes, the

intensity correlation coefficient and a relative anomalous

correlation coefficient for clustering of datasets (Liu et al.,

2013).

Following previous work (Karplus & Diederichs, 2012;

Diederichs & Karplus, 2013), we chose the numerical value of

CC1/2, an indicator for the precision of the data resulting from

merging of the partial datasets, as an optimization target. We

have shown earlier that CC1/2 limits – as seen from the prop-

erties of the derived quantity CC* – the ability to obtain good

agreement between model and data (Karplus & Diederichs,

2012). Since the goal of structure analysis is to obtain a model

consistent with the data, it appears logical to optimize CC1/2.

CC1/2 can be evaluated and optimized as a function of the

datasets being merged, and we propose and study a procedure

to identify non-isomorphous crystals from multi-crystal data-

sets based on their influence on CC1/2. Simulated data as well

as experimental datasets from two projects, PepT and AlgE

(Huang et al., 2015), were analysed to identify non-isomor-

phous datasets.

2. Methods

2.1. Simulated data

Eleven complete datasets to 1.46 Å resolution were simu-

lated with SIM_MX (Diederichs, 2009) using the atomic

coordinates of cubic insulin [Protein Data Bank (PDB) code

2bn3 (Nanao et al., 2005); space group I213] and a flat bulk

solvent (density 0.35 e� A�3 and B = 50 Å2) for the calcula-

tion of structure factors. To simulate a specific case of non-

isomorphism by numerical experiments, the unit-cell para-

meters were elongated by different amounts (0–1 Å). This

results in a different sampling of the molecular transform and

thus changes the intensities. Artificial Fcalc
2 to be used as

intensities were then calculated using PHENIX.FMODEL

(Adams et al., 2002), and simulated raw datasets were calcu-

lated with SIM_MX and processed with XDS (Kabsch,

2010a,b). Different random seeds ensured that different

(pseudo-) random errors for different datasets were calcu-

lated.

2.2. Experimental data

Crystallization and data collection of the membrane protein

peptide transporter PepT from Streptococcus thermophilus

(483 residues) and AlgE, the alginate transporter from Pseu-

domonas aeruginosa (490 residues), were described previously

(Huang et al., 2015). PepT and AlgE X-ray diffraction data

consisting of small rotation wedges of different crystals, to 2.78

and 2.54 Å resolution, respectively, were collected at room

temperature from crystals in meso and in situ at the PX II

beamline of the Swiss Light Source (Villigen, Switzerland).

Each rotation wedge was collected from a different crystal and

is denoted as a (partial) dataset in the following. Data were

processed with XDS and XSCALE (Kabsch, 2010a,b). For this

work, not all datasets that were used at the time of PDB

deposition were available; thus for PepT, we used 159, and for
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Table 1
Crystallographic statistics of experimental datasets.

PepT AlgE

PDB code 4xni 4xnk
Space group (20) C2221 (19) P212121

Unit-cell parameters (Å) a = 106.88, b = 106.88,
c = 111.14

a = 48.01, b = 74.34,
c = 184.69

Wavelength (Å) 0.979180 1.033000
No. of crystals 159 266
Resolution (Å) 50–2.78 50–2.54
Completeness (%) 97.6 84.7
Completeness highest resolu-

tion shell
67.6 (2.85–2.78) 7.6 (2.61–2.54)

Total No. of observations 905 207 151 228
No. of observations per crystal

(min–max, mean)
2592–6040, 5693 59–507, 564

No. of unique reflections 16 485 18 684
Rmeas 0.973 0.565
CC1/2 0.992 0.926
hI/�(I)i 4.25 2.74



AlgE, we used all 266 datasets available, 175 of which were

used in the work of Huang et al. (2015). Table 1 summarizes

these data.

2.3. Calculation of CC1/2: the r–s method

For the calculations of CC1/2 the XSCALE output file

(XSCALE.HKL) was used. Merged intensities of observations

were weighted with their sigma values as assigned by the data

processing programs, XDS and XSCALE.

As defined by Karplus & Diederichs (2012), CC1/2 can be

calculated from the formula for Pearson’s correlation coeffi-

cient:

CC1=2 ¼

P
ai � að Þ bi � b

� �
P

ai � að Þ
2P bi � b

� �2
h i1=2

; ð1Þ

where ai and bi are the intensities of unique reflections merged

across the observations randomly assigned to subsets A and B,

respectively, and a and b are their averages.

For this work, we calculated CC1/2 in a different way,

avoiding the random assignment to subsets. CC1/2 may be

expressed as (Karplus & Diederichs, 2012, supplement)

CC1=2 ¼
�2
�

�2
� þ �

2
"

; ð2Þ

with

� = difference between true values of intensities and their

average (thus � has zero mean),

"A,B = random errors in merged intensities of half-sized

subsets (with zero mean) which are mutually independent and

on average of equal magnitude,

�2
� = variance of �,
�2
" = variance of "A;B.

Then, the full dataset merged intensity y (after subtraction

of the average) is � þ ð"A þ "BÞ=2 and

�2
y ¼ �

2
� þ

1
2 �

2
" : ð3Þ

We may thus substitute �2
y �

1
2 �

2
" for �2

� and obtain

CC1=2 ¼
�2
�

�2
� þ �

2
"

¼
�2

y �
1
2 �

2
"

� �

�2
y �

1
2 �

2
"

� �
þ �2

"

¼
�2

y �
1
2 �

2
"

� �

�2
y þ

1
2 �

2
"

� � : ð4Þ

This just requires calculation of �2
y, the variance of the average

intensities across the unique reflections of a resolution shell,

and 1
2 �

2
" , the average variance of the observations contributing

to the merged intensities.

As shown above, this ‘�–� method’ of CC1/2 calculation is

mathematically equivalent to the calculation of a Pearson

correlation coefficient for the special case of two sets of values

(intensities) that randomly deviate from their common ‘true’

values. Since it avoids the random assignment into half-data-

sets, it is not influenced by any specific random number

sequence and thus yields more consistent values, as further

discussed below (x4.1).

The average intensity of macromolecular diffraction data

diminishes with increasing resolution. If all data, from low to

high resolution, are used for calculation of an overall CC1/2,

the resulting correlation coefficient is dominated by the strong

low-resolution terms and therefore biased towards large

positive values; the overall CC1/2 is thus almost meaningless

(Karplus & Diederichs, 2015). More meaningful CC1/2 values

are obtained when dividing the data into (usually ten or more)

resolution shells, since in each resolution shell the average

intensity can be considered constant. To obtain a single value,

we average the CC1/2 values obtained in all resolution shells,

while weighting with the number of contributing reflections.

2.4. The DCC1/2 method

Since our goal is to maximize CC1/2 by excluding datasets,

we used the following simple algorithm that avoids any

combinatorial explosion of possibilities. We define as

CC1/2_overall the value of the average CC1/2 when all datasets

are included for calculation. Furthermore, we denote as

CC1/2_i the value of CC1/2 when all datasets are included except

for one dataset i, which is omitted from calculations. CC1/2_i is

calculated for every dataset i. We define

�CC1=2 i ¼ CC1=2 i � CC1=2 overall: ð5Þ

If �CC1/2_i > 0 (< 0), this dataset is improving (impairing) the

overall CC1/2. After rejection of the dataset belonging to the

worst negative �CC1/2_i, all remaining datasets are processed

by XSCALE again, because any dataset influences all scale

factors. The newly scaled output file can be used to identify

another potential non-isomorphous dataset, and this may be

iterated until no further significant improvement is obtained;

usually, two or three iterations are sufficient.

2.5. Validation of isomorphous dataset selection

We devised a strategy to assess an actual improvement of

the data by comparison with the squared Fcalc moduli obtained

from a structural model. To this end, deposited PDB models

(4xnj for PepT, 4xnk for AlgE; Huang et al., 2015) were

processed with PHENIX.FMODEL to produce Fcalc
2 reference

data, to be used for comparison with Iobs. We define

CCFOC_overall as the correlation coefficient of observed and

calculated intensities when all datasets are included. More-

over, we define CCFOC_i as the correlation coefficient with all

datasets included except for one dataset i, which is omitted

from calculations. The difference

�CCFOC i ¼ CCFOC i � CCFOC overall ð6Þ

then gives the improvement or impairment the dataset i causes

in the overall correlation of data and model. �CCFOC_i < 0

indicates an impairment in the similarity of data and model;

�CCFOC_i > 0 indicates an improvement. We chose to

compare �CCFOC_i and �CC1/2_i although it would be more

appropriate to use CC� (Karplus & Diederichs, 2012) instead

of CC1/2, or in other words, to compare �CCFOC_i and a

quantity defined analogously to �CC1/2_i , �CC�i = CC�i �

CC�overall. However, since CC� depends monotonically on

CC1/2, any qualitative finding obtained in a comparison of

�CCFOC_i and �CC1/2_i would be the same as for a �CCFOC_i

and �CC�i comparison.
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For some calculations, random shifts of atom coordinates of

the original PDB file were introduced by MOLEMAN2

(Kleywegt, 1995).

3. Results

3.1. Characteristics of DCC1/2 for the simulated data

Eleven complete datasets with different changes in the unit-

cell parameters were used to simulate a realistic case where

most of the datasets are isomorphous relative to each other

but some are (non-isomorphous) outliers.

The �CC1/2 method was applied to the simulated datasets.

In general, increasing changes in unit-cell parameters are

associated with decreasing �CC1/2_i, as expected (Table 2).

The largest change in unit-cell parameters (1.0 Å) shows the

lowest �CC1/2_i, which is thus correctly identifying non-

isomorphism. �CC1/2_i shows highly positive values for those

datasets where no or only slight changes were introduced (0.0–

0.2 Å). �CC1/2_i does not increase linearly; rather, it drops

dramatically from 0.2 to 0.4 Å. On the basis of �CC1/2_i, the

most isomorphous dataset is the one with a 0.2 Å cell para-

meter change; this appears to be a sensible result since its

intensities are the most closely related to those of all other

datasets.

The numerical values of �CC1/2_i change to a much greater

extent (�0.5 to 0.8) than in the experimental case. This is

because the impact of one complete dataset (out of 11) is high

in comparison to a single small rotation wedge SSX dataset

(out of hundreds). Moreover, the artificially induced gap

between nearly perfect isomorphous datasets (cell changes of

0.0–0.4 Å, i.e. close to the average of all cell changes) and very

few severely non-isomorphous datasets (cell changes of 0.6–

1.0 Å) enforces this effect.

3.2. PepT: model unbiased by non-isomorphous dataset

For PepT, 159 datasets were analysed, as seen in Fig. 1,

where a histogram of �CC1/2_i is shown. The histogram is

dominated by a Gaussian-shaped central part slightly above

�CC1/2 = 0, with standard deviation � = 1.68 � 10�4. Datasets

with a �CC1/2_i of around zero do not significantly change the

overall CC1/2; however, their inclusion is necessary for

increased completeness and multiplicity. One dataset has a

significantly (�28.8�) negative �CC1/2_i and is thus identified

as non-isomorphous. Some datasets have, at 31.8� and 76.2�, a

highly positive �CC1/2_i ; they significantly decrease

CC1/2_overall if rejected and appear to be particularly valuable.

Comparing, in terms of raw data appearance and processing

logfiles and statistics reported by XDS or XSCALE, positive

or negative outlier datasets with datasets from the central part

of the histogram showed no striking peculiarities for any of the

analysed criteria such as number of reflections or similar. In

particular, negative �CC1/2_i was not predictable from unit-

cell parameters, spot shape or other data processing statistics

of single datasets. Furthermore, the negative outlier had not

been identified by the ISa-based (Diederichs, 2009) rejection

of datasets performed by Huang et al. (2015). However, we

note that important experimental variables, like crystal

volume, are not recorded during the experiments.

Fig. 2 shows a plot of �CCFOC_i against �CC1/2_i for the

datasets of this project. If our procedure for identifying non-

isomorphism is meaningful, we expect an improvement of the

correlation between model Fcalc
2 and merged Iobs for those

datasets that increase CC1/2, and a decrease of correlation for

the non-isomorphous ones. As could be expected from the
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Table 2
�CC1/2_i of synthetic datasets with elongated unit-cell parameters.

Change of unit-cell parameters (Å) �CC1/2_i

+1.0 �0.518
+0.8 �0.313
+0.6 �0.271
+0.4 �0.262
+0.2 +0.873
+0.1 (2 datasets) +0.785, +0.785
0.0 (4 datasets) +0.710, +0.706, +0.698, +0.684

Figure 1
Histogram of �CC1/2_i values for PepT. The �28.8� unit outlier is
indicated with an arrow.

Figure 2
Plot of �CCFOC_i against �CC1/2_i for PepT. The �28.8 8� unit outlier
(�CC1/2_i ’ �4.8 � 10�4) is boxed.



histogram of Fig.1, most of the data sets cause little change of

�CCFOC and �CC1/2; they cluster in the middle of the

diagram. The dataset identified as the most non-isomorphous

one indeed shows the worst correlation of experimental data

and model; CCFOC is significantly improved when rejecting

this specific dataset. Conversely, some of the datasets show a

clear improvement of CCFOC and CC1/2.

The validation appears to work satisfactorily despite the

fact that the 4xnj model derived from cryo data and used here

for validation is itself not isomorphous with the data, since the

cell parameters of the cryo and the room-temperature crystals

differ in a and b by about 4%.

3.3. AlgE: model biased by non-isomorphous dataset

AlgE displays a similar histogram (� = 7.22 � 10�4) of

�CC1/2_i values (Fig. 3) as PepT. The worst non-isomorphous

dataset is, at �14.8� units, an obvious outlier of the �CC1/2_i

distribution. Similarly, positive outliers exist at 10.1� and

11.5� units. As for PepT, we did not observe in the raw data or

in the processing and scaling statistics any particular proper-

ties of positive or negative outliers. Again, the strongest

negative outlier had not been identified by the ISa-based

rejection of datasets performed by Huang et al. (2015).

In contrast to Fig. 2, the plot of �CCFOC_i against �CC1/2_i

for AlgE shows an unexpected behaviour (Fig. 4). As

expected, most of the datasets cluster at �CC1/2 and �CCFOC

values around zero, but the dataset identified by �CC1/2_i as

the most non-isomorphous dataset is surprisingly showing the

best �CCFOC_i. Conversely, the best datasets as judged from

�CC1/2_i exhibit negative �CCFOC_i.

After some investigation, we attributed these observations

to our choice of PDB models used for validation. In the case of

PepT, we had chosen the model based on an independent

single-crystal cryo dataset (4xnj), whereas in the case of AlgE,

we had chosen 4xnk which had been refined against those

datasets we were now trying to characterize. In the case of

AlgE, refinement of the model 4xnk against the SSX data had

led to a bias in the sense that the model partly fits the

systematic effects contributing to the non-isomorphism of the

worst dataset. This bias additionally leads to a reduced

�CCFOC_i since the model is biased into a state more distant

from those of datasets with positive �CC1/2_i.

We therefore performed an additional experiment: By

applying random shifts of magnitude up to 1.0 Å to the 4xnk

coordinates, we attempted to ‘shake’ the model out of its local

minimum. Recalculating �CCFOC_i for increasing shifts, we

progressively observed the expected behaviour of a positive

correlation between �CC1/2_i and �CCFOC_i, as emphasized

by arrows in Fig. 4. This is most pronounced for the dataset

with largest negative �CC1/2_i, which is seen to have strongly

negative �CCFOC_i when the model is shaken most. However,

the datasets with most positive �CC1/2_i did not fully reach

high values of �CCFOC_i, presumably because, for the highest

shifts, the model is strongly degraded so that it cannot fit the

data well.

Ideally, validation is done with a model that is independent

of the data. Another experiment was therefore performed

with the 4xnl coordinates derived from a dataset collected at

cryo temperature. In this case, no bias is present, and indeed

there is a positive correlation between �CC1/2_i and �CCFOC_i

(data not shown), similar to Fig. 2 for PepT, as expected.

4. Discussion

4.1. Calculation of CC1/2

We have shown above that CC1/2 can be calculated with the

�–� method, without invoking random selections of observa-

tions. The approach to the calculation of CC1/2 has a number of

advantages compared with the random-selection method

using the formula for Pearson’s correlation coefficient:

(a) It avoids the numerical spread of results associated with

different seeds of the random split assignment and is therefore

more accurate.
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Figure 3
Histogram of �CC1/2_i values for AlgE. The �14.8� unit outlier is
indicated with an arrow.

Figure 4
Plot of �CCFOC_i against �CC1/2_i for AlgE. Different colours and
marker symbols refer to the different random shifts of the atom
coordinates. Arrows indicate the change of �CCFOC_i upon increasing the
magnitude of random shifts for the three most significant outliers of the
Gaussian distribution of Fig. 3.



(b) It treats odd numbers of reflections consistently, which

otherwise lead to unequal numbers in the two half-datasets,

which again leads to more accurate results.

(c) It treats the sigma weighting of merged intensities more

consistently. The original derivation of properties of CC1/2

(Karplus & Diederichs, 2012, supplement) does not take

weighting of intensities into account, whereas our formulation

in x2.3 naturally accommodates weighted intensities.

(d) The higher precision of CC1/2 values allows us to

calculate precise �CC1/2 values that would vanish in the noise

incurred by random assignments.

(e) The calculation of the anomalous CC1/2 (CC1/2_ano) can

be done analogously. For CC1/2_ano, the formula suggests an

answer to a question that has puzzled several crystal-

lographers and was discussed on the CCP4 bulletin board

(CCP4 Bulletin Board, 2015): why do we sometimes see

negative (mostly anomalous) CC1/2 values in high-resolution

shells? The formula tells us immediately that this symptom

indicates that the average variance of the observations is

higher than the variance of the averaged intensities in those

particular resolution shells. Obviously, this is consistent with

the given situation in which practically no anomalous signal

but the usual measurement error is present.

4.2. Choice of target function and rejection criterion

There exist two types of errors in crystallographic intensity

data: random and systematic. If only random errors are

present in the observed intensities Ii, no datasets should be

discarded, no matter how weak they are, since they improve

the merged intensities Imerged if the �i are derived from

counting statistics. This situation defines ‘isomorphism of

datasets’, in which the following hold:

(i) The relations Imerged ¼
P
ðIi=�

2
i Þ=
P
ð1=�2

i Þ and �2
merged ¼

1=
P
ð1=�2

i Þ hold strictly, and therefore Imerged=�merged grows

monotonically if more data are merged.

(ii) CC1=2 ¼ ð�
2
y �

1
2 �

2
" Þ=ð�

2
y þ

1
2 �

2
" Þ (as defined in x2) also

grows monotonically since the mean error decreases if more

data are merged. The value of CC� ¼ ½2 CC1=2=ð1þ CC1=2Þ�
1=2,

itself monotonically depending on CC1/2, then is an accurate

indicator for the correlation of the merged data and the

(unknown) true data (Karplus & Diederichs, 2012).

However, if systematic errors exist – which is unfortunately

always the case, to some extent – these are by definition not

independent. The above relations for Imerged, �merged and CC1/2

then tell us the precision, but not the accuracy, of the merged

intensities.

The Imerged=�merged ratio still increases in the presence of

systematic errors, since the denominator of
P
ð1=�i

2Þ grows

with every observation merged. Imerged=�merged is therefore not

suitable for identifying systematic error. CC1/2, on the other

hand, diminishes if data with a sufficient amount of systematic

error are merged, since it depends on the agreement of the

observed intensity values. Non-isomorphism between datasets

is a special case of systematic errors which affect all reflections

in a dataset in a way that may in principle be different for

every dataset. For simplicity, however, we may assume that

most datasets do not differ significantly in systematic ways.

This assumption is valid if the crystals are grown from the

same protein preparation under the same conditions, the

crystals are mounted, measured and processed in the same (or

a closely similar) way, and indexing ambiguities (if applicable)

have been resolved (Brehm & Diederichs, 2014).

A single rogue (outlier) dataset then has a small influence

on the merged data, but if even the small part of the total

dataset that it influences leads to a significant decrease of

CC1/2, this may be considered a strong hint towards non-

isomorphism of this particular dataset, and it appears justified

to discard it. Its exclusion should reduce the noise in electron

density maps and improve the agreement between merged

data and the refined model.

A small degree of non-isomorphism in a dataset may still

allow a slight increase or lead to an insignificant decrease of

CC1/2, such that this dataset cannot be identified with the

�CC1/2 method. If a large number of such datasets are

merged, this will lead to a degradation of the merged inten-

sities, because they introduce into the merged data a mixture

of signals corresponding to molecular conformations or states

distant from the majority one. Refinement of a single model

against such merged data will ultimately also result in elevated

Rwork/Rfree and noise in electron density maps. This means that

many slightly non-isomorphous datasets may result in a slight

increase of CC1/2 while nevertheless decreasing the suitability

of the data for refinement.

An increase of CC1/2 is thus a necessary but, because of this

caveat, not strictly a sufficient condition for improvement of

data by merging. In principle, the �CC1/2 method shares this

restriction with the BLEND method (Foadi et al., 2013), which

uses a large cell parameter deviation as rejection criterion.

However, since it uses the experimental intensity data, the

�CC1/2 method directly targets the desired property of opti-

mizing the merged intensity data, and is successful in doing so

as seen when being validated. Compared to the pairwise-

correlation method of Giordano et al. (2012), which interprets

low correlation as meaning low non-isomorphism, we argue

that our method avoids the erroneous rejection of weak

datasets, at least in situations where the majority of datasets

are isomorphous and a mixture of strong and weak datasets

exists.

4.3. Non-isomorphism in simulated and experimental data

If datasets are artificially modified such that non-

isomorphism is introduced by increasing amounts of unit-cell

inflation, a direct relation between �CC1/2_i and the amount of

unit-cell change is found (Table 2). We find that changes in the

unit cell from 0.4 Å can be considered as non-isomorphous for

this combination of datasets. This does not mean that non-

isomorphism caused by unit-cell changes is in general not

detectable below 0.4 Å; in fact the threshold is dependent on

the resolution of the data and the specific combination of

datasets, which is why we propose an iterative usage of the

method.
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The most isomorphous dataset is the one with the average

of all unit-cell dimensions, which appears to confirm the

method of Foadi et al. (2013). The latter method would not

have been of much help for the PepT and AlgE projects,

however, because their partial datasets have poorly deter-

mined unit-cell parameters and therefore our a posteriori

analysis could not reveal any particular unit-cell-related

deviations or properties of non-isomorphous datasets.

For the latter projects, identification of non-isomorphous

datasets was straightforward with the �CC1/2 method. Owing

to our precise method for CC1/2 calculation, outliers may yield

high significance levels, and we expect this to hold also for a

larger number of datasets.

Unfortunately, from a theoretical point of view it remains

unclear which properties the outlier datasets have such that

they strongly influence the merged data; further work in this

area is underway.

4.4. Pitfalls of validation

One way of validating the identification of non-isomor-

phous datasets would be to refine a model against merged data

with and without the dataset in question and to compare

Rwork/Rfree of the two refinements. However, trials to do so

convinced us that the small number of free-set reflections

present in each partial dataset lead to inconclusive results as

Rfree showed large variations.

Likewise, direct comparison of squared structure factors

from the model with intensities of partial datasets did not lead

to conclusive results, since weak datasets displayed low

correlations.

We therefore compared, without refinement, �CCFOC_i, the

change in correlation coefficient between observed structure

factors and structure factors calculated from their PDB

models, with �CC1/2_i. In the case of PepT, we found that

those datasets which were identified as non-isomorphous

according to �CC1/2_i also reduce the correlation of the

merged data with the model, and thus we confirmed our

decision based on �CC1/2_i. However, the AlgE datasets

displayed the opposite effect, which puzzled us until we

realized that the model we were basing the comparison upon

had – in contrast to the PepT model we used – originally been

refined against the very data we were comparing it with. In

other words, the model had been influenced by all datasets,

including non-isomorphous ones, and was therefore biased:

exclusion of non-isomorphous data from the merged data

resulted in an increase of �CCFOC_i. The remedy we found

and employed was to add large random shifts with zero mean

to the coordinates of the model, thus reducing the bias by

forcing the model out of its biased local energy minimum, at

the expense of an overall degraded model with little discri-

minatory power.

One way of avoiding the bias problem would be to perform

refinements of a mildly shaken model and leave out each

dataset in turn, to arrive at more realistic unbiased �CCFOC_i

values. However, this would be a project on its own and was

considered outside the scope of this work.

4.5. Summary

Our findings demonstrate that non-isomorphous datasets

can be identified with an algorithm which uses the numerical

value of the average CC1/2 across all resolution shells as an

optimization criterion. This not only works well with artificial

data simulating cell parameter variation but is also demon-

strated and validated with experimental data.

Although CC1/2 was devised as a precision indicator for the

merged data, it can also serve as a proxy for the quality of the

model that can be derived from the data, since CC1/2 consti-

tutes the link between data and model quality (Karplus &

Diederichs, 2012). This role as proxy is compromised if model

bias plays a role. However, contrary to classical model bias

where the phases and therefore the electron density map are

influenced by the very model that is the goal of structure

solution, here we experience a different kind of bias: a dataset

influences the model to such an extent that the correlation of

model and data always diminishes if that dataset is removed

from the merged data (and is strong enough). This leads to the

insight that each and every dataset noticeably influences the

model, and consequently the model will have to account for all

possible constituents and conformations present in the data.

However, systematic differences between crystals cannot

properly be modelled in refinement since in serial crystal-

lography the averaging of datasets is incoherently done on

intensities, rather than on structure factors as would happen if

different conformations occur in the coherently illuminated

volume of a single crystal. Since a refined model, with its

coherently diffracting constituents, cannot fully approximate a

sum of intensities (i.e. squared amplitudes) with a (squared)

sum of amplitudes, an elevated level of Rwork/Rfree and noise in

electron density maps would result if non-isomorphism is not

detected and the worst datasets are not excluded.

In our trials with experimental data measured at a

synchrotron, the outcome was the rejection of only a single (as

for PepT and AlgE) or a few rogue datasets. However, this

rather attests to the consistent quality of the data obtained in

SSX. Finally, we note that our procedure is equally applicable

to datasets obtained from SFX. Rejection rates may be higher

in the latter method since its technology is less mature than

that of SSX and the absolute numbers of datasets are high. We

therefore expect that the �CC1/2 method will be useful in

SFX.
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