2nd workshop on Exotic Radionuclides from Accelerator Waste for Science and Technology (ERAWAST II) ### **ERAWAST** – nuclear chemistry for nuclear science Dorothea Schumann for the ERAWAST - collaboration Paul Scherrer Institute **ERAWAST**: objectives Outcome of the previous workshop Examples for chemical separations - Graphite wheels: Analytics and separation of ¹⁰Be and others - Lead from SINQ targets: Analytics and separation of ²⁰⁷Bi - ⁶³Ni-⁶³Cu separation Potential for future experiments ### **PSI** accelerator facilities and the **ERAWAST-project** Exotic Radionuclides from Accelerator WAste for Science and Technology Background: High-energetic protons and secondary particles produce in spallation reactions exotic isotopes with A \leq 1+A_{Target} Collaboration between Nuclide production facilities Basic nuclear physics research Nuclear astrophysics AMS measurement groups Environmental chemistry ### 1st ERAWAST workshop #### 15.-17.11.2006 at PSI Exploratory workshop, supported by ESF (European Science Foundation) 25 talks, 30 participants from 12 countries Objective: identify possibilities for isotope production on the one side and potential users on the other side ### Topics: - Accelerator waste analysis - Radionuclide production possibilities - Separation techniques - Nuclear astrophysics - Basic nuclear physics - Medical applications - Applied research ### Outcome of the 1st ERAWAST workshop (1) #### Bi- or multilateral collaborations which can be started in the near future (2007-2008) - Laser based investigations and analytics of ultra rare trace isotopes (University of Mainz, Germany in collaboration with Nagoya University, Japan and University of Jyväskylä, Finland) + - 60 Fe (n, γ) 61 Fe at stellar energies: Astrophysical quests and experimental challenges (Forschungszentrum Karlsruhe, Germany) + + - Spectroscopy of ¹⁰Be on the search for the beryllium halo nuclei charge radii (GSI Darmstadt, Germany) + - - ⁷Be for measuring the cross section of the ⁷Be(p,γ)⁸B reaction (Weizmann Institute Rehovot, Israel, ISOLDE/CERN Switzerland) + - - ⁷Be for ion-implantation at ISOLDE/CERN to study the half-life in various media and to perform ⁷Be(n,p) emission channeling experiments at ILL Grenoble + + - - A new ¹⁰Be beam at CRC/UCL (Université catholique Louvain, Louvain-la Neuve, Belgium) + - - ⁴⁴Ti abundance as a probe of nucleosynthesis in core collapse supernovae (University of Edinburgh, UK; UCL, Belgium) - - - Model studies with a ⁴⁴Ti/⁴⁴Sc radionuclide generator (University of Mainz, Germany) + - - Half-life measurement of ⁶⁰Fe and ⁵³Mn (Technical University of Munich, Germany) + + + - - Proton-neutron interaction at the proton dripline near ⁴⁴V (ATOMKI, Debrecen, Hungary, in collaboration with RCNP, Osaka, Japan) - - AMS measurements with an ²⁶Al standard (ETH Zürich, Switzerland, University of Vienna, Austria) ++ - ### Outcome of the 1st ERAWAST workshop (2) #### Plans for collaboration in a longer time scale (start 2009 and later) - Branchings in the s-process path (GSI Darmstadt, Germany) ? - Neutron capture on radioactive isotopes for astrophysics (Los Alamos National Laboratory, USA) ? - Perspectives for measurements of neutron reaction cross sections of rare radioactive isotopes at CERN n_TOF (CERN, Switzerland) + - Half-life measurements of long-lived rare earth isotopes (Technical University Munich, Germany) ongoing - Construction of a ⁴⁴Ti/⁴⁴Sc-generator for animal and clinical application (Uni Mainz), transferred to ZRW (Radiopharmaceutical department of PSI) - Development of a ²⁶Al beam for nuclear astrophysics (Université catholique Louvain, Louvain-la Neuve, Belgium; TUM Munich, Germany) cancelled - Irradiation of special samples in the SINQ target Bi for the production of ²⁰⁵Pb (Los Alamos National Laboratory, USA), enriched ³⁴S for the production of ³²Si (University of Vienna, Austria). - Long-lived radionuclides produced in the irradiation of samples at the instruments LOHENGRIN and GAMS of the Institute Laue Langevin (Grenoble, France). + - Mass separation needs further discussion in particular for the study of ⁶⁰Fe production at stellar energies. partially solved ### Outcome of the 1st ERAWAST workshop (3) #### **Generell agreements** - The Saha Institute of Nuclear Physics (Kolkata, India), the University of Mainz (Institute for Nuclear Chemistry, Mainz, Germany) and PSI (Villigen, Switzerland) will discuss possible collaboration concerning chemical separation techniques. not successful - Other facilities shall be contacted for a possible collaboration (TRIUMF, Vancouver, Canada; Rutherford Appleton Laboratory, UK; SNS, Oak-Ridge, USA). + - Other institutes and universities acting as users shall be included + - A dedicated ERAWAST-webpage will be installed + - Applications for joint projects (7th framework of EC, national funding and others). + - - An announcement on ERAWAST will be made in Nuclear Physics News, the magazine of NuPECC + - A proposal for an ESF Research Networking Program named ERIMAST (Exotic Radionuclides from Irradiated MAterials for Science and Technology) was launched to support the network of collaboration from 2008 + - Objectives of the present workshop Celebrate achievements Continue with successful collaborations Establish new collaborations #### **PSI** accelerator facilities Injector cyclotron (72 MeV protons) 590 MeV Ring Cyclotron Up to 2.4 mA proton beam current SINQ – spallation neutron source COMET (cyclotron 250 MeV) for medical use **Ultra Cold Neutrons** SLS Swiss Light Source ### Isotope production possibilities at PSI #### **Accelerator** waste Shielding, construction material, targets, beam dumps, cooling intensely exposed by high-energetic protons and secondary particles dismounted, cooled ready or foreseen for disposal #### Waste components: Copper beam dump irradiated at the 590-MeV proton beam station at PSI, dismounted about 15 vears ago ²⁶Al, ⁵⁹Ni, ⁵³Mn, ⁶⁰Fe, ⁴⁴Ti Ayranov Proton-irradiated carbon from target E ¹⁰Be. ⁷Be ¹⁴C. ³H #### Material from the SINQ facility Lead targets ²⁰⁷Bi, ¹⁸²Hf, rare earth elements (e.g. ¹⁴⁶Sm, several Dy isotopes) and lighter isotopes STIP program (material research program) Stainless steel for ⁴⁴Ti, ²⁶Al, ⁵³Mn production Bunka #### SINQ cooling water Ayranov ⁷Be, long-lived isotopes from irradiated structure material (²²Na, ⁸⁸Y and many others) #### **Special irradiations** The SINQ facility offers the possibility to irradiate materials with 590 MeV protons at special positions. Tended experiments for isotope production can be offered V for ⁴⁴Ti production Bi for ²⁰⁵Pb production Irradiation with 71 MeV protons (injector 2) and up to 590 MeV neutrons (NAA, PNA) **Chemical separations with other material** ### Requirements for sample preparation ### Important questions Separation techniques depend strongly on the corresponding sample requirements - •Total amount of activity? - •Which chemical form? - With carrier or non-carrier-added? - Disturbing isotopes? - Magnitude of decontamination factors? - •Matrix of the final sample? - •Single or multiple separation? - Shielding equipment (hotcell) necessary? ### The long way from a source to a sample ### How do we get from a beam dump to a sample solution or a target? Analytics Separation Preparation **Application** ### **Analytics of accelerator waste at PSI** - Activation of components no more negligible due to the high beam current (mA range) - Residue nuclide production in spallation targets is not as well-known as for Nuclear Power Plants – especially poor knowledge for long-lived products - Complex nuclear reactions (protons, neutrons, other secondary particles) make theoretical predictions difficult - Reactions with impurities and reaction products make theoretical predictions much more difficult - Product spectrum covers all elements up to 1 unit higher than the target mass → complex chemistry - Target material (solid or liquid heavy metals) requires knowledge on intermetallic compounds and interactions, in many cases not available - Volatiles require special attention - Theoretical calculations for predictions of the radionuclide inventory exist at PSI, but experimental determinations for benchmarking are mandatory - Radiochemistry is an essential issue for evaluation processes, licensing procedures, decommissioning and waste management connected with the operation of large accelerator facilities - Gives information on promising material for the production of valuable exotic isotopes ### **Graphite targets from Target-E** Myon production station, consumes up to 20% of the proton beam Typical operation time: 1-3 years Source for ⁷Be and ¹⁰Be Other radionuclides: ¹⁴C, ³H, impurities of ²²Na, ⁵⁴Mn, ^{57/60}Co Mean diameter: 450 mm Graphite density: 1.8 g/cm³ Operating Temperature: 1700 K Irradiation damage rate: 0.1 dpa/Ah Rotational Speed: 1 Turn/s Target thickness: 60/40 mm 10/ 7 g/cm² Beam loss: 18/12 % Power deposition: 30/20 kW/mA #### **SPOKES** To enable the thermal expansion of the target cone #### **BALL BEARINGS** *) Silicon nitride balls Rings and cage silver coated Lifetime 2 y *) GMN, Nürnberg, Germany ### A new design of graphite wheel proton beam ### Sample taking ### **Chemistry** #### Determination of ³H and ¹⁴C: - Dissolving the graphite in H₂SO₄/HNO₃/HClO₄ 2:1:1 - Evaporation of CO₂ and adsorption in 1M NaOH for determination of ¹⁴C - ³H remains in the solution (aliquot for LSC measurement) #### Determination of ¹⁰Be - Adding stable Be as carrier - Dissolving the graphite in - H₂SO₄/HNO₃/HClO₄ 2:1:1 - Precipitation of Be(OH)₂ with NH₃ - Purification of the Be fraction by ion exchange on DOWEX50x8 - Measurement by AMS and ICP-MS ### Results (1) Measured data for all targets: ³H [MBq/g]; ¹⁴C, ¹⁰Be [Bq/g]; beam dose in Ah | sample | Beam dose | ¹0 B € | e meas. | ¹⁰ Be calc. | ³ H meas. | ³ H calc. | ¹⁴ C meas. | ¹⁴ C calc. | |--------|-----------|---------------|---------|------------------------|----------------------|------------------------------|-----------------------|-----------------------| | | | ICP-MS AMS | | | | | | | | E70 | 3.98 | 220 | | 998 | 7,7-108 | 1.1 · 10 ⁹ | 1-10 ³ | 8.8 | | E71 | 5.14 | 291 | 316 | 1290 | 4.8-108 | 1.6 - 10 ⁹ | 1.1·10 ³ | 11.4 | | E72 | 3.89 | 506 | 495 | 1140 | 1.4·10 ⁹ | 1.3-10 ⁹ | 2.4·10³ | 8.6 | | E78 | 11.35 | 2049 | | 2850 | 1.5-106 | - | < 500 | - | | E79 | 6.64 | 3971 | | | 6.9-108 | 2.7 · 10 ⁹ | 2041 | 11 | | E83 | 1.84 | 541 | | | 3.2-108 | 8.8-108 | <500 | 3 | | E92 | 28.79 | 13456 | | | 3.6-108 | 1.6-10 ¹⁰ | 9401 | 53 | Calculations do not agree with measurements Measurements do not in all cases correspond to the beam dose (evaporation of tritium, secondary particle production dependent on beam dose) Sample taking position important (see next slide) ### Results (2) Dependence of the measured ¹⁴C and ³H concentration on the sample taking position: Figure a-c: Radial distribution of ³H and ¹⁴C in the graphite target wheels No. E 79, 83 and 92 ¹⁰Be distribution is expected to be similar Important result: Distribution not homogenious; follows the beam profile; sample taking positions for analytics have to be selected carefully For isotope production positions with highest specific activity shall be used ### Chemical separation of ¹⁰Be - Graphite of Target E contains mainly: ¹⁴C, ³H, ¹⁰Be (⁷Be decayed) - 10B as the stable isobaric isotope of 10Be has to be separated nearly completely Result: ~ 80 μg ¹⁰Be = 5·10¹⁸ atoms ### **Lead targets from SINQ** Samples from target 4 2 years operation EOB 1999 #### Tasks: - Determination of the radionuclide distribution within the targets by analysing several rods (top ten radionuclides) - Selection of material for radionuclide extraction (182Hf, lanthanides and others) ### First preliminary analytical results | γ-measurements
(3/2011) | D9
[Bq/g] | D14
[Bq/g] | AMS-, LSC-,
measurement | D9
[Bq/g] | D14
[Bq/g] | | |--------------------------------------|----------------------|----------------------|----------------------------|-------------------------|----------------------|--| | ²⁰⁷ Bi | 2.52·10 ⁷ | 1.18·10 ⁷ | ⁵⁵ Fe | | 1.05·10 ⁵ | | | ¹⁷² Lu/ ¹⁷² Hf | 4.99·10 ⁶ | 2.12·10 ⁶ | ²⁶ AI | 0.5 | 0.2 | | | ¹⁷³ Lu | 2.82·10 ⁶ | 9.76·10 ⁵ | ³⁶ CI | 95 | 48 | | | ¹⁹⁴ Au/ ¹⁹⁴ Hg | 1.19·10 ⁷ | 5.08·10 ⁶ | ⁶³ Ni | | 1.70·10 ⁵ | | | ¹⁰² Rh | 2.00·10 ⁶ | 7.24·10 ⁵ | | | | | | ²⁰² TI/ ²⁰² Pb | 4.80·10 ⁵ | 1.30·10 ⁵ | | | | | | ⁶⁰ Co | 2.10·10 ⁶ | 8.73·10 ⁵ | | | | | | ¹²⁵ Sb | 5.17·10 ⁵ | 4.13·10 ⁵ | LSC-me | LSC-measurement: 4/2011 | | | | ¹³³ Ba | 1.65·10 ⁶ | 6.93·10 ⁵ | AMS: 7/2006 | | | | | ^{108m} A g | 4.44·10 ⁵ | 1.50·10 ⁴ | | I | I | | ### Radionuclides requiring chemical separations ### ²⁰⁷Bi - Calibration source for PTB ## Application as γ -spectroscopic calibration source (240 kBq) - relatively long half-life of 31.5 ys - three γ -lines up to 1800 keV #### Purification from ^{108m}Ag 1mg La added precipitation of the bismuth hydroxide with NH₃ solution silver completely in solution precipitate dissolved in 1M HNO₃ removal of La using cation exchange again #### Chemical separation of ²⁰⁷Bi 10 mg of irradiated Pb dissolved in 10 ml 7M HNO₃ (spectrum a) solution evaporated dissolved in 3M HNO₃ and passed through a lead-specific ion exchange column (Eichrom) evaporated and dissolved in 1 M HNO₃ Cation exchange on a DOWEX50x8 column Column washed with 10 ml 1M HNO₃ Bi-fraction eluted with 6 ml 0.4 M HCl (spectrum b) ### ⁶³Ni-⁶³Cu separation – tasks for chemistry Study of the neutron capture cross section of ⁶³Ni at n_TOF (s-process) #### **Tasks** - Separation of the in-growed ⁶³Cu because produces high resonances in the n_TOF experiment - Re-measurement of the ⁶³Ni half-life ### Sample description and chemical purification #### Sample description 2 targets: LANL 347 mg, Karlsruhe 661 mg (Originally from TU Munich) Enriched ⁶²Ni (98%), irradiated in high flux reactors about 30 years ago ~11 % ⁶³Ni; total activity about 200 GBq Expected amounts of isotopes after 30 years: 879 mg ⁶²Ni, 109 mg ⁶³Ni, 20 mg ⁶³Cu, 20 mg others Total: 988 mg Ni, corresponds to 1255 mg NiO Separation factor for Cu 2000 (model experiments, ICP-OES) #### Chemical separation of ⁶³Cu - Dissolution of the Ni-foils in 7 M HNO₃ - Evaporation - Dissolution in 1M HCl - Precipitation of CuS using H₂S - Precipitation of Ni(OH)₂ with NaOH #### **Target preparation** - Drying at 80°C and calcination at 800°C to produce NiO - Total amount NiO: 1147 mg (91% chemical yield) - Packing into PEEK capsule ### **Summary and outlook** #### **Achievements** ²⁰⁷Bi from lead calibration source PTB ⁴⁴Ti from copper calibration source HZDR ⁷Be from graphite precise measurement of the half-life ⁶⁰Fe from copper target for neutron capture cross section ⁶⁰Fe from copper determination of the half- life ⁶³Ni from LANL/KIT/ neutron capture cross TUM section at n TOF ⁷Be from SINQ environmental studies water ⁶⁸Ge activation AMS measurements in SINQ ²⁶Al from STIP 300 Bg ready ¹⁰Be from Target E 80 μg ready #### Ongoing or upcoming experiments 44Ti 50 MBq for target HZDR 44Ti 100 MBq for radioactive beam (CERN, TRIUMF) 53 Mn $\sim 10^{18}$ atoms for the half-life measurement (PSI) and neutron capture cross section 7 Be 1 GBq for 7 Be(n, α) α (SOREQ Nuclear Center) 60 Fe $\sim 10^{15}$ atoms for the re- measurement of the half-life (PSI and Uni Vienna) 60 Fe $\sim 10^{15}$ atoms for a target for thermal neutron capture cross section (Uni Vienna) 63Ni several MBq for the re-measurement of the half-life 59 Fe(n, γ) 60 Fe reaction: irradiation of enriched 58 Fe at ILL, sample preparation ready, AMS-measurement of 60Fe/58Fe ratio at TUM ongoing #### **Future** ### Remote controlled separation of the copper beam dump - 60Fe n.c.a. - 44Ti n.c.a. - ²⁶Al n.c.a. - ⁵³Mn n.c.a. ### **Complete analysis of the SINQ-target** - Production of ²⁰⁷Bi in the MBq range - Separation of Lanthanides (¹⁴⁶Sm) - Separation of ¹⁸²Hf - Other radionuclides ### New collaborations ERAWAST III workshop?