A Short-pulse Second Target Station at the SNS

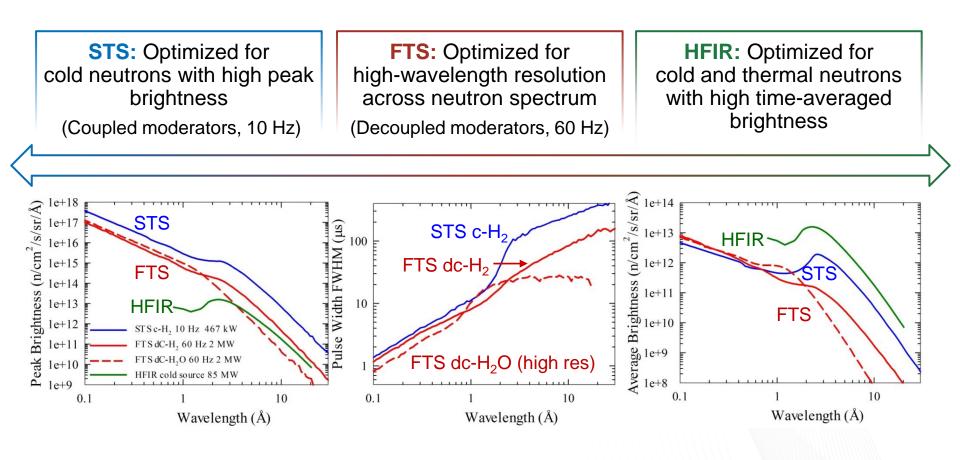
Presented at IWSMT-12 – Bregenz, Austria

Bernie Riemer Instrument and Source Division Oak Ridge National Laboratory

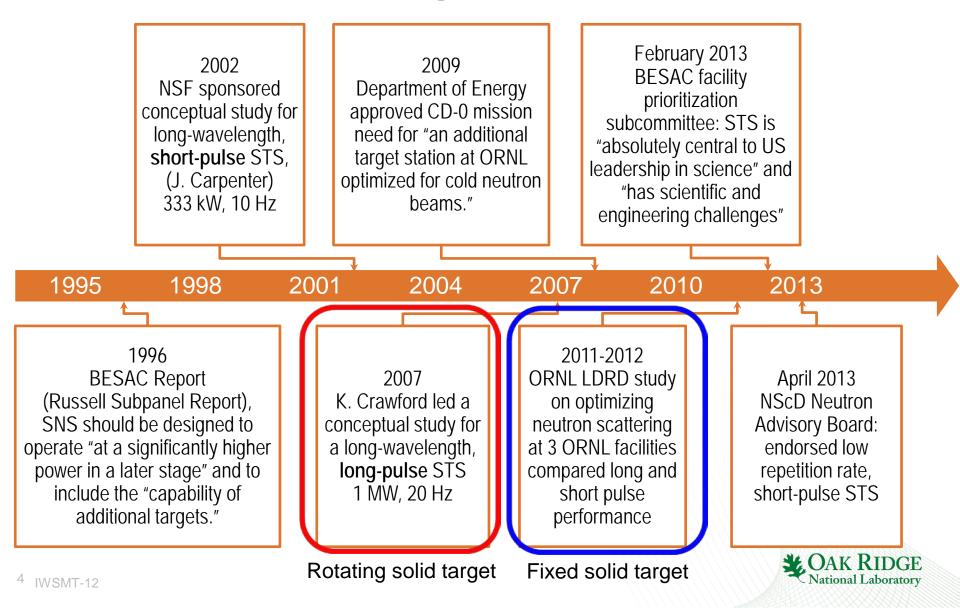
October 20, 2014

ORNL is managed by UT-Battelle for the US Department of Energy

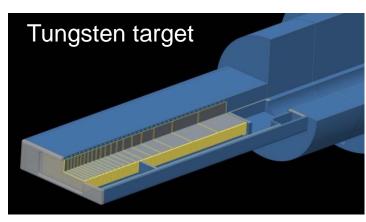
Neutron scattering facilities at Oak Ridge National Laboratory today

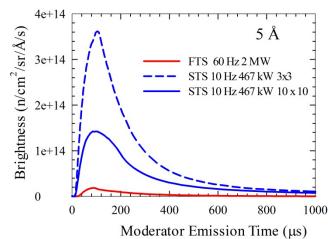

High Flux Isotope Reactor (HFIR) Intense steady-state neutron flux and a high-brightness cold neutron source

Spallation Neutron Source (SNS) World's most powerful accelerator-based neutron source



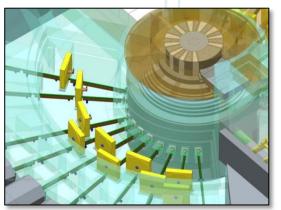
Complementarity across 3 ORNL neutron sources provides opportunity for instrument optimization

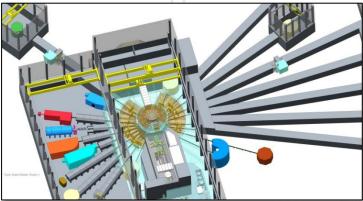



SNS accelerator complex was designed to support two target stations

STS concept Optimized for highest neutron peak brightness at long wavelengths

2.8 MW accelerator complex, 1.3 GeV protons, 60 Hz, pulse-stealing mode FTS: 2+ MW (5/6 pulses) STS: 467 kW (1/6 pulses) Compact, highperforming target 30 cm² proton beam cross section (FTS: 140 cm²) Solid tungsten for better neutron production Compact, highbrightness moderators Gains of 2–3 compared to large moderators 22 instrument end stations \approx 11 deg beam separation Instrument length: 15 m \leq L \leq 120 m

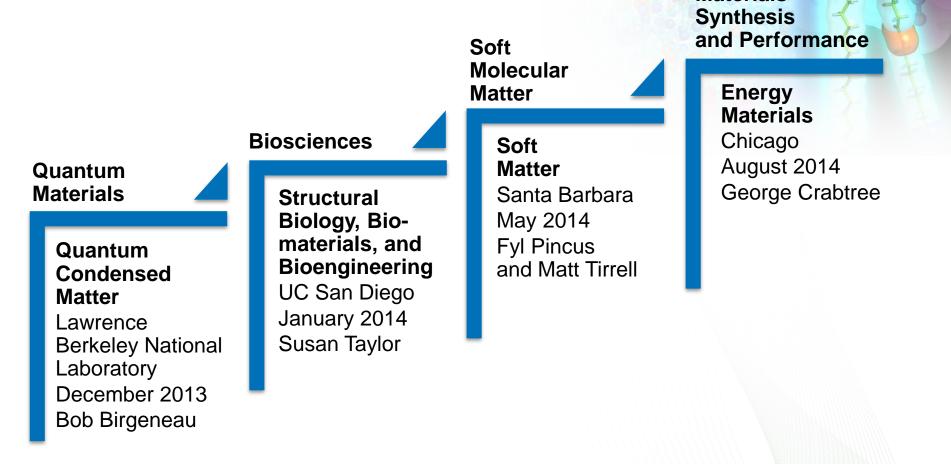




TDR activities, FY14

(Technical Design Report)

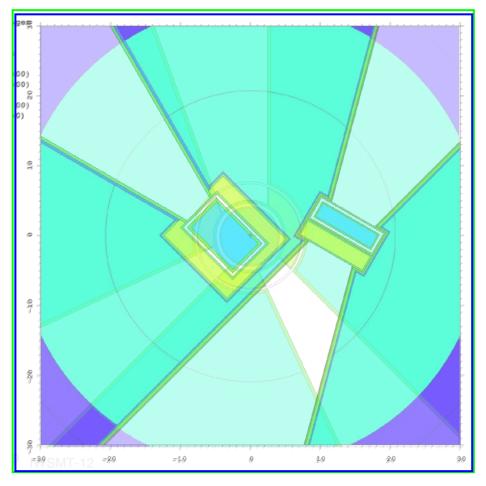
1									
Core team of engaged individuals									
	Establish initial design concepts	Define Work Breakdown Structure to level 3	Engage A/E for site layout and definition of conventional facilities						
	 Instrument suite plan 3 moderators (FY13 LDRD) 	 Major subsystems (e.g., individual instruments, accelerator RF systems) 	 ORNL estimators will generate initial cost estimate 						
	Compact tungsten targetProton beamline lattice	 Top-down cost estimates 							

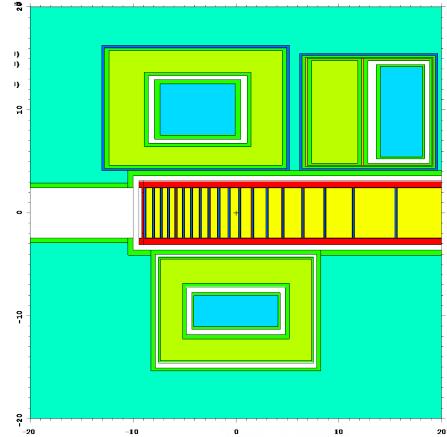


to STS

We have engaged the U.S. scientific community

Materials

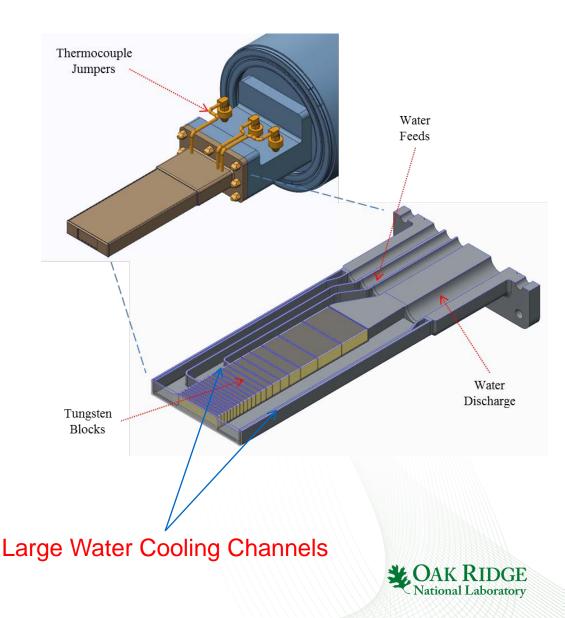

19 STS instruments in planning suite


Instrument	Description	Length (m)	Sample size (cm)	Moderator Type	Moderator Size HxV (cm ²)	Beamline
	DIFFRACTIO	N				
		90	2	Cold, coupled p-H2	5x5	14
NeSCRY	Magnetic diffraction for small crystal and epitaxial materials	40	2	Cold, decoupled p-H2	5x5	
	Long-wavelength neutron diffractometer for magnetic structure			· · · ·	5x5 → 3x3	
VERDICT	determination similar to ISIS-TS2 WISH	40	2	Cold, coupled p-H2		13
HiRes	High resolution powder diffractometer	100 - 120	3	Cold, decoupled p-H2	7x7	20
EWALD	Macromolecule single crystal diffractometer (1 mg samples)	90	<0.1	Cold, coupled p-H2	3x3	16
DYPOL	Macromolecule dynamically polarized single crystal diffraction	90	<0.1	Cold, coupled p-H2	5X5 → 3x3	12
	REFLECTOME	TRY		· · · ·	· · · · · ·	
TLR	Kinetics liquids reflectometer	15-20	2	Cold, coupled p-H2	5x5 → 3x6	2
mmLR	Small sample liquids reflectometer	30-40	1	Cold, coupled p-H2	3x3	4
M-STAR	Polarized neutron reflectometer	20-30	2	Cold, coupled p-H2	3X3	7
M-WASABI	Polarized reflectometer combined with GISANS	20-30	2	Cold, coupled p-H2	3x3	6
	SANS					
	High-resolution small and wide-angle neutron scattering.					
SWANS	(Molecular ordering to nanostructures)	20	1	Cold, coupled p-H2	3x3	15
	Flux Optimized Order-Disorder SANS. Fast kinetics and out-of-					
FLOODS	equilibrium behavior	20-30	1	Cold, coupled p-H2	3x3	5
	INELASTIC/QUASI-	-ELASTIC				
	Cold neutron chopper spectrometer optimized for high flux on					
superCNCS (SBIS)	small samples (10 mg) and polarization	60 – 120	1	Cold, coupled p-H2	3x3	17
	Cold neutron chopper spectrometer optimized for large single				10x10 → 5x5	
superLET	crystals and polarization	25	5	Cold, coupled p-H2	guide at 75 cm	11
Mibars	Mica-based very high resolution backscattering spectrometer	60	3	Cold, decoupled p-H2	7x7	19
	Very broad dynamic range using wide-angle velocity selector as					
WAVESS	analyzer	15-17	3	Cold, decoupled p-H2	7x7	18
	Hybrid spectrometer (low-Q chopper spectrometer,	50	2	Thermal-Cold,		40
JANUS	backscattering analyzer spectrometer)	50	3	decoupled	7x7	10
		40 50	1	Thermal-Cold,	22	0
CAMEA-type	Extreme environment/inverse geometry	40-50	1	decoupled	3x3	8
SPHIINX	SPHerical Indirect Inelastic Xtal spectrometer (70 meV elastic, 1% dw/w)	35-40	3	Thermal-Cold, decoupled	7x7	9
3ruiiny	EXTREME CONDITIONS				/X/	9
7	Versatile instrument designed for studies at the highest	60	2	Cold, coupled p-H2	F. F. N 0.00	
	magnetic fields	60	2		5x5→3x6	1

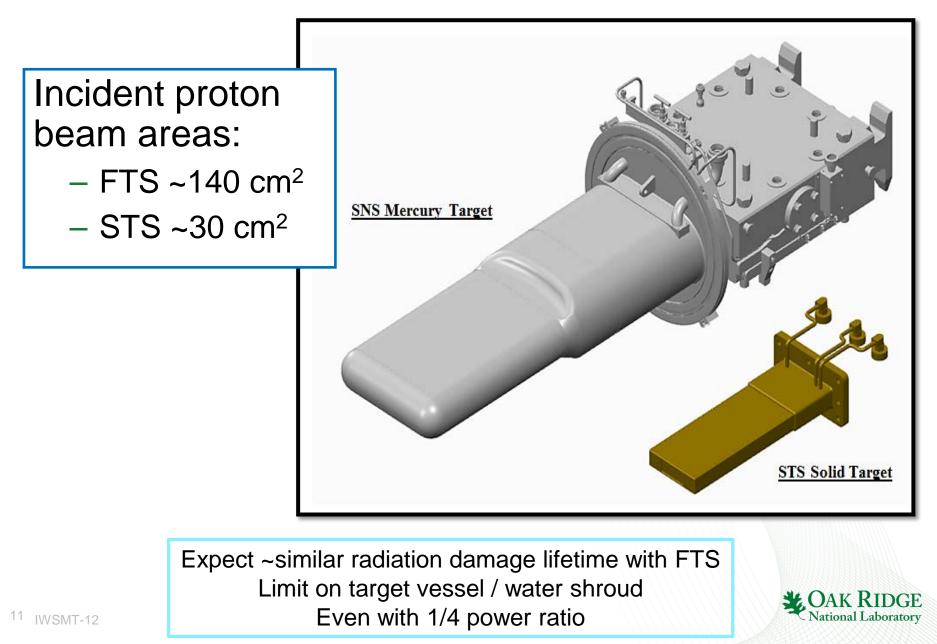
National Laboratory

STS source baseline configuration

Coupled para-hydrogen moderators in the upstream positions


Decoupled para-hydrogen and water moderators at top downstream position

Vational Laboratory


Stationary solid target uses stacked plates

Design concept proven in other facilities (LANSCE->3 years; ISIS->13 years).

- Tantalum clad tungsten plates
- Heavy water cooled
- Significant TC monitoring
- Independent cooling of shroud
- Preliminary thermal and neutronic calculations based on a flat beam profile indicate that a stack of 18 tantalum clad tungsten plates with 240 GPM water cooling will perform well.
- FY15 design will incorporate more accurate beam profile

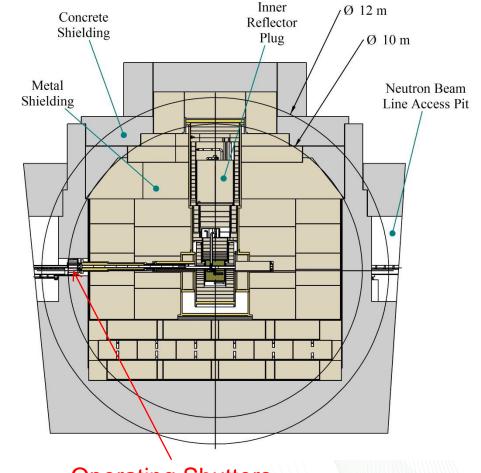
Compact STS target for high n intensity

STS target station general configuration

- The basics:
 - Neutron beam lines coordinated with planning suite
 - Moderators and reflector coordinated with neutronics analysis team
 - Buildings coordinated with conventional facilities
 - Target building
 - Based on existing facilities
 - Target operations separated from instrument operations

Many features adopted from FTS

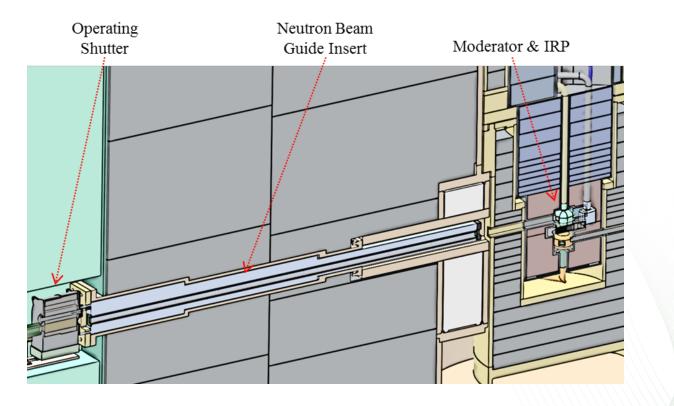
- Inner reflector plug & tooling & storage vessel
- Moderators and hydrogen / helium system
- Proton beam window & tooling
- Water utility system & layout
- Core vessel configuration
- Target module & maintenance system
- Waste handling system and casks


New features requiring development

- Neutron beam line tunnels (below grade beam lines)
- Shutters outside monolith
- Extended monolith guide inserts
- Larger choppers ($\phi \sim 1.7$ m)
- Precision neutron beam guides (narrow and long)
- Increased power density on solid target, energy density per pulse
- SAFETY

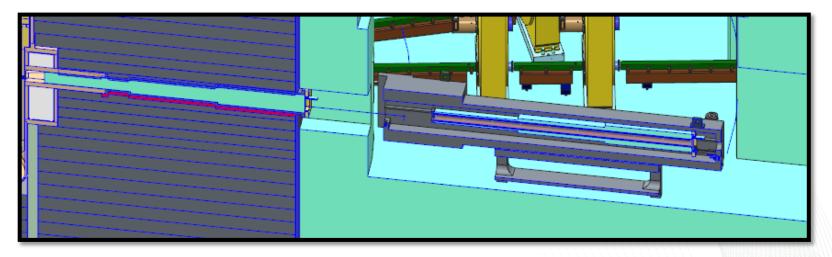
Shutters will not be Installed in the monolith

- Advantages include cost savings, simplified beam-on operations and reduced maintenance
- Issues:
 - Operating shutters in pits must be sized and configured
 - Maintenance scenario and tooling must be developed
 - Design for additional shutters on some beam lines must be developed

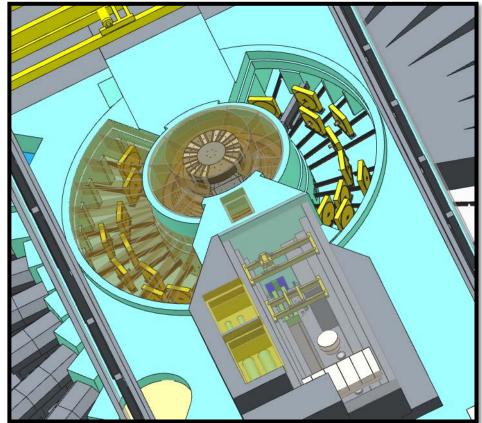


Operating Shutters

Extended monolith beam line inserts


- Advantages: minimum number of beam line windows; simplified maintenance access (compared to FTS)
- Issues
 - Length (3.7 m) incompatible with mirror guide lengths
 - Precision alignment will be a challenge

Neutron guide remote tooling will be complex

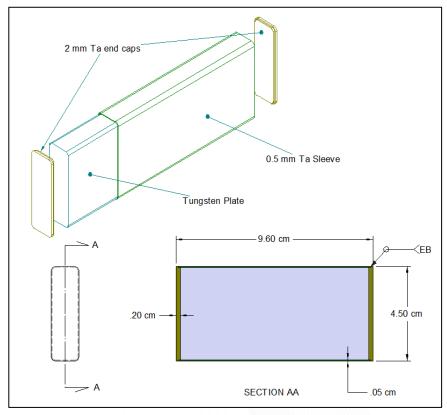

- Activated inserts retracted into shielded container for handling and temporary storage
- New inserts inserted with same machine.
- Beam line components in pit must be removed to make room for machine
- Neighboring choppers may also require removal
- Streaming radiation will be significant during change-out

Choppers in neutron beam pits

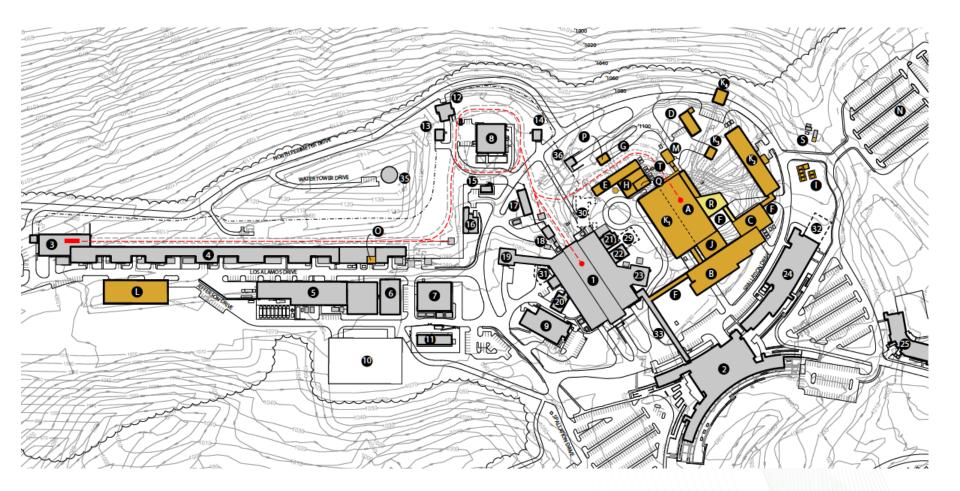
- Pits primarily designed to accommodate choppers and insert removal tooling
- The width of the pits is determined by the length of the insert removal equipment.
- The height of the pits is determined by the choppers.
- The pit cover blocks with individual mass ~36 tonne and stack to a thickness of ~2 m
- THE PITS WILL BE VERY CROWDED

Precision neutron beam lines

- STS relies on precisely focused, small, bright beams to achieve superior instrument performance
- For many beam lines this will require:
 - Active guide alignment
 - Elliptical, mirrored guides
 - Precise alignment of core components (moderatorinserts)
- Structural stability
- Beam line design will be one of the primary design focus areas in FY15


Loss-of-coolant accidents (LOCA) are a concern

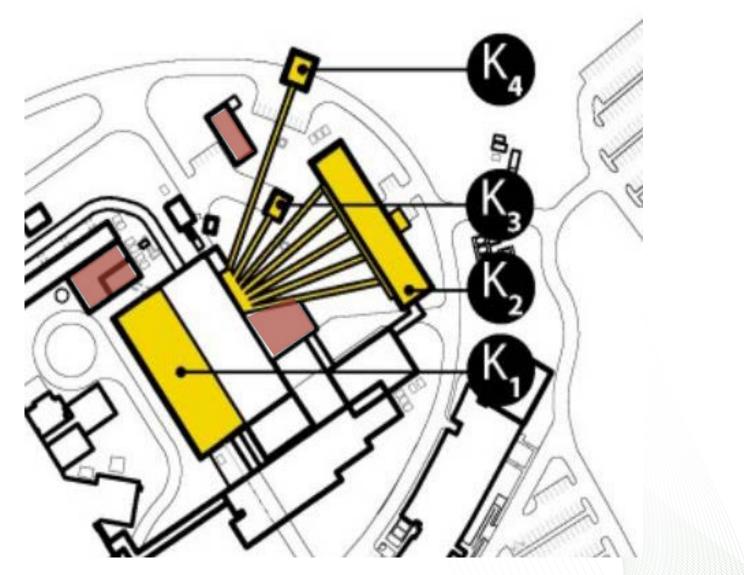
- Loss of coolant could result in tungstic acid vapor (WO₃*H₂0) being produced as a result of tungsten vaporization at an elevated temperature (> 800 °C) in the presence of steam
 - This reaction also produces hydrogen which can burn or detonate creating elevated pressures for discharges
- Highly activated powder generated by the condensing acid vapor dispersed to the site boundary is an unacceptable condition if a large fraction of the tungsten is involved
 - Must prove it can't happen or incorporate credited controls
- The LOCA failure mode has been studied and documented at LANSCE
 - has never occurred there or at ISIS
- Understanding this failure in STS and incorporating controls into the system will be one of the primary focus areas of the STS FY15 design effort
- Experiments to quantify the mitigation of tungsten vapor release by virtue of the cladding under LOCA scenarios are planned


Tungsten plate design, manufacturing & cladding

- Manufacturing tantalum clad tungsten plates with high reliability is a significant challenge
- ISIS has been directly involved in the manufacturing process for more than 15 years and is now fabricating the plates inhouse
- During FY15 ORNL plans to begin a formal, cooperative R&D effort with ISIS to better understand and improve the manufacturing process

Conceptual Site Layout

Conceptual Site Layout - 3D



Conceptual Site Layout - 3D

Instrument Buildings

Doubling the Accelerator Intensity - *use operational lessons*

	1.4 MW Operation	STS Upgrade	Original STS Upgrade
Energy (GeV)	0.94	1.3	1.3
Macro-pulse length (ms)	0.97	0.97	1
RFQ output beam current (mA)	35	45	55
Macro-pulse un-chopped fraction	0.81	0.85	0.7

New approach significantly eases the ion source requirements

Where are we right now?

- Technical Design Report (TDR)
 - Almost complete in final technical editing
 - Mainly intended for internal use
 - First cut at cost estimate just compiled

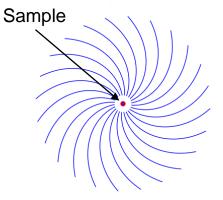
Over next ~ 15 months

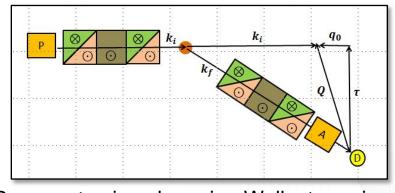
- Further optimization, development, refine cost estimate
 - Instrument suite
 - Source design
 - Accelerator and facility
- Prepare Conceptual Design Report (CDR)
 - Submit to Dept. of Energy in 2016

Questions?

er er

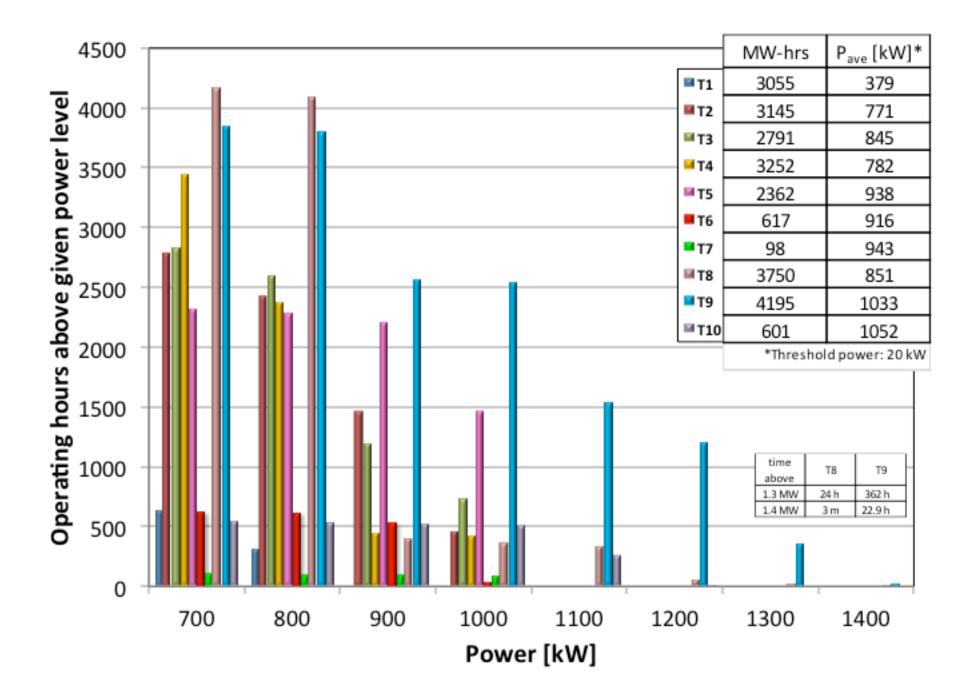
16


Additional Material


FY15-FY16 LDRD: Next-generation neutron source and instrumentation

Development and demonstration of Wide-Angle VElocity Selector (chopper used in an indirect geometry) Eugene Mamontov

Novel approach to resonant spin echo for ultrahigh resolution spectroscopy (HB1) Jaime Fernandez-Baca Solid-state neutron detectors for STS (new scintillator + silicon PMT) Rick Riedel Moderator demonstration at Integrated Test Stand Facility: Performance of large volume, high-brightness para-H₂ moderators Erik Iverson



WAVES concept

Resonant spin echo using Wollaston prisms

