

CCMX Competence Centre for Materials Science and Technology

Wir schaffen Wissen – heute für morgen

Marc Raventós

Neutron Imaging & Activation Group, Paul Scherrer Institut, Switzerland

Diffractive Neutron Imaging

- 1. Introduction
- 2. Neutron interactions
- 3. Bragg edge scattering
- 4. Energy selection
- 5. Detector setup
- 6. Applications

1. Introduction

- 2. Neutron interactions
- 3. Bragg edge scattering
- 4. Energy selection
- 5. Detector setup
- 6. Applications

What information is present on scattered neutrons? Where do these neutrons go? Can we detect them?

First proof of principle: everything on one detector

 FeS_2

Primitive cubic structure

- Study of crystal orientation and crystalline properties of **bulky samples**
- Applicable to single crystals and coarse polycrystals
- Privileged position of neutrons thanks to their wavelength

- 1. Introduction
- **2.** Neutron interactions
- 3. Bragg edge scattering
- 4. Energy selection
- 5. Detector setup
- 6. Applications

NEUTRON INTERACTIONS – Nuclear or crystalline

INCOHERENT SCATTERING

COHERENT SCATTERING

NEUTRON INTERACTIONS – Overview

And what can we know from this?

 $n\lambda = 2dSin\theta$

And what can we know from this? 1 cm

Diffractive Image

 $n\lambda = 2dSin\theta$

And what can we know from this?

 $n\lambda = 2dSin\theta$

Interplanar distance of [1 1 0] plane for pyrite? \rightarrow 3.831 Å

Interplanar distance of [1 1 0] plane for pyrite? \rightarrow 3.831 Å

Interplanar distance of [1 1 0] plane for pyrite? \rightarrow 3.831 Å

distances, energy can be known

Interplanar distance of [1 1 0] plane for pyrite? \rightarrow 3.831 Å

- Knowing crystal orientation and interplanar distances, energy can be known
- Knowing energy and interplanar distances, crystal orientation can be known

When the neutrons satisfy the bragg condition for a certain interplanar distance, there is a local maximum in the coherent scattering cross section (**Bragg edge**).

- 1. Introduction
- 2. Neutron interactions
- **3.** Bragg edge scattering
- 4. Energy selection
- 5. Detector setup
- 6. Applications

- 1. Introduction
- 2. Neutron interactions
- 3. Bragg edge scattering
- 4. Energy selection
- 5. Detector setup
- 6. Applications

ENERGY SELECTION - Methods

	Monochromaticity	Exposure time	Wavelength shift	Availability
Velocity Selector	15%	1 min	1 Å	ICON
Double Crystal	2.5%	5 min	0.1 Å	BOA
Time Of Flight	<0.5%	2.5 h		BOA

- 1. Introduction
- 2. Neutron interactions
- 3. Bragg edge scattering
- 4. Energy selection
- **5.** Detector setup
- 6. Applications

Contradictory requirements

Transmission	Diffracted neutrons		
Small FOV	Large FOV (large angular range many grains)		
High resolution	Resolution not crucial		
In beam direction	Perpendicular to direct beam lower background favoured diffraction direction		

Two camera systems desired:

- 1) high-resolution imaging
- 2) larger FOV

... already existing at the ICON beamline (PSI): micro set-up and midi set-up.

Two camera systems desired:

- 1) high-resolution imaging
- 2) larger FOV

... already existing at the ICON beamline (PSI): micro set-up and FLAT PANEL.

DETECTOR SETUP – Flat Panel

- Gadox scintillator
- Fast acquisition
- Neutron imaging
- X-Ray imaging
- Compact
- FoV: 24.9 x 30.2 cm
- Pixel size 139 µm
- Now available at ICON!

- 1. Introduction
- 2. Neutron interactions
- 3. Bragg edge scattering
- 4. Energy selection
- 5. Detector setup
- 6. Applications

- 1. Introduction
- 2. Neutron interactions
- 3. Bragg edge scattering
- 4. Energy selection
- 5. Detector setup
- 6. Applications

APPLICATIONS – Crystal orientation

Different solidification directions

SX 5

Vary midibox to sample distance for ray-tracing

Rotate the sample (standard transmission tomography)

Sample projections under different angles Tomographic reconstruction?

APPLICATIONS – Tomography

Mapping of local reflectivity (3D, nondestructive) in bulk metallic single crystals.

Combine with transmission data

Transmission & Diffraction

APPLICATIONS – Polycrystal nDCT

Grain mapping of polycrystalline bulky aluminum cylindric sample.

Peetermans, S. Energy selective neutron imaging for material science. *PhD Thesis presented 18 December 2014. École Polytechnique Federale de Lausanne.*

APPLICATIONS – nDCT Limitations

APPLICATIONS – nDCT Limitations

- Most of the work shown in this presentation belongs to Dr. Steven Peetermans. Thanks to him for letting me use it for the lecture.
- Thanks for your attention!

- Scattered neutrons affect the transmitted image
- They modify the signal measured in every pixel

- Scattered neutrons affect the transmitted image
- They modify the signal measured in every pixel

Neutron beam

- Scattered neutrons affect the transmitted image
- They modify the signal measured in every pixel

• They modify the signal measured in every pixel

- Scattered neutrons affect the transmitted image
- They modify the signal measured in every pixel
- Increase sample to detector distance?

•

•

But how to tackle it?

But how to tackle it?

Monte-Carlo simulations

Robust curve fitting

But how to tackle it?

Monte-Carlo simulations

Robust curve fitting

• For scattering from water

Correction Methods for the Quantitative Evaluation of Thermal Neutron Tomography R. Hassanein (2006)

• For other scatterers

Coming soon...