

CCMX Competence Centre for Materials Science and Technology

Wir schaffen Wissen – heute für morgen

Steven Peetermans

Neutron Imaging & Activation Group, Paul Scherrer Institut, Switzerland now at AV Controlatom, Belgium

Energy-selective neutron imaging

PSI, 8. Oktober 2015

But Σ is more than just a number...

$$\int_{\lambda} I(\lambda) d\lambda = \int_{\lambda} I_0(\lambda) e^{-\Sigma(\lambda)x} d\lambda$$

Interaction (Σ) depends on the neutron energy Incident beam spectrum I₀(λ)

Traditionally imaging: spectral averaged Σ_{eff} Information is lost

But Σ is more than just a number...

A closer look...

A closer look at the iron samples

This lecture: investigate the $\Sigma(\lambda)$ to probe new sample properties

Cross section

Cross section = interaction probability

Microscopic cross section σ :

neutrons undergoing interaction per target nucleus incident neutron flux

Macroscopic cross section Σ :

$$\Sigma = N\sigma$$
$$\Sigma = \frac{\rho N_A}{M}\sigma$$

Clearly the interaction (cross-section) is wavelength dependent. What interactions are there possible?

N = density of nuclei ρ = mass density M = molar mass N_A = Avogadro's constant (6.022e23#/mol)

"The slower the neutron, the more time it has to interact and be absorbed" Or Limit of the Breit-Wigner equation for describing resonances

PAUL SCHERRER INSTITUT

Activation of samples: example Cu

Activation of samples: example Cu

In many materials the nuclei form an ordered, periodic structure.

If phase difference equals $n\lambda$, with n=1,2,3,... reflected waves in phase (constructive interference):

Scattering is *Coherent*

Condition: $2dsin\vartheta = n\lambda$

Bragg Law

Amorphous materials: no periodic structure is present scattering is *Incoherent*

Periodic (?) structure

Different isotopes, Interaction with nuclear spin I combines as J[±]= I ±1/2 neutrons see this difference

Not truely a periodic structure for our incident neutrons

Often you have both coherent and incoherent scatt.

Periodic structure of average scattering length \overline{b}

Coherent scattering

Corrections to it (random)

Incoherent scattering

Crystal at room temperature; Atoms feature thermal motion The energy associated with atomic vibrations is quantized: phonons

Incident neutron can

Transfer energy to the crystal (phonon creation) Get energy from the crystal (phonon annihalition).

Elastic scattering: no energy transfer Inelastic scattering: energy transfer

PAUL SCHERRER INSTITUT

Different moderators, different average energy

Be

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

Normalized Flux 0.2 0.4

Filters

- Cross section high before the Bragg cut-off, low after •
- Take a block thick enough, only neutrons $\lambda > \lambda_{Br}$ get • through
- (Cool it to limit losses above λ_{Br} : reduce inelastic • phonon scattering)
- Typical materials: Be (~4Å), C(~6.7Å) • e.g. ICON (CH), 100mm in selector wheel)
- For people wanting only epithermal neutrons: • Cd filter (thermal resonance). E.g. Antares II (D), 2mm in selector wheel), NPP control rods

3

4

5

λ [A]

6

7

10

Double crystal monochromator

Bragg Law

 $2d\sin\theta = n\lambda$

Set crystal angle to $\theta_1 \rightarrow \lambda_1$

Second crystal parallel to bring it back in the original direction

PAUL SCHERRER INSTITUT

Double crystal monochromator

Bragg Law

 $2d\sin\theta = n\lambda$

Set crystal angle to $\theta_1 \rightarrow \lambda_1$

Second crystal parallel to bring it back in the original direction

Set crystal angles to $\theta_2 \rightarrow \lambda_2$, + translate

Typical crystals: PG002, Ge, Si

Spectrum

Higher order contributions (n=2,3,... reflections)

 $2d\sin\theta = n\lambda$

Crystal set to $\theta \rightarrow \lambda$, also $\lambda/2$ (n=2), $\lambda/3$ (n=3)...

Solution: PG002 + Be-filter / Ge, Si: 2nd order forbidden (F=0)

Spectral width

Single crystal = small blocks (~100µm) of small misorientation

This is called mosaicity

So θ and hence λ ar no $\delta\text{-function}$

The better the monochromaticity, the less neutrons you get on you're detector! (So the longer the exposure time for one image, let alone a tomography)

Si, Ge: too perfect ($\Delta\lambda/\lambda$ <0.01%), hot bending to introduce defects PG002: Commercially available, only ordered in the [002] direction, the choice in imaging

Imaging:

- Mosaic spread ~ 0.4°
- Monochromaticity $\Delta\lambda/\lambda \sim 1-3\%$

vertically homogeneous

02.10.2015

PAUL SCHERRER INSTITUT

Neutron velocity selector

Δλ/λ=15%

- + Relatively high count rates
- + ES Imaging past Bragg cut-off
- Sharp Bragg edge imaging

http://www.sii.co.jp/jp/segg/files/2013/03/file_PRODUCT_MASTER_1381_GRAPHIC02.pdf

Calibration energy-scan of an iron plate (5mm)

A shift in the incoming spectrum will also induce a shift in the observed Bragg edge position

How to deal with it

But know the shiftmap at one wavelength, you know it for all

Peetermans, S.; Grazzi, F.; Salvemini, F. & Lehmann, E. Spectral characterization of a velocity selector type monochromator for energy-selective neutron imaging *Physics Procedia*, **2013**, *43*, 121-127

PAUL SCHERRER INSTITUT

Time of flight

Limited by initial pulse width

What if you don't want a full spectrum, just work with a single monochromatic wavelength?

Energy-selective Imaging

0

Imaging just before and just after the Bragg edge for Copper

 $\rightarrow \Delta \Sigma_{Cu}$ large, $\Delta \Sigma_{Fe}$ small (its Bragg edge is elsewhere)

Reconstruction of $\Delta\Sigma$ provides phase mapping

Kockelmann, W.; Frei, G.; Lehmann, E. H.; Vontobel, P. & Santisteban, J. Energy-selective neutron transmission imaging at a pulsed source *Nuclear instruments and methods in physics research A*, **2007**, *578*, 421-434

Stressing a dogbone sample and perform energy scan Fit of derivative for increased accuracy in Bragg edge position

Woracek, R.; Penumadu, D.; Kardjilov, N.; Hilger, A.; Strobl, M.; Wimpory, R. C.; Manke, I. & Banhart, J. Neutron Bragg-edge imaging for strain mapping under in situ tensile loading *Journal of Applied Physics*, **2011**, *109*, 093506-1 - 093506-4

PAUL SCHERRER INSTITUT

Texture

- No longer all random orientations
- Some orientations occur more than others (preferred orientation / texture)
- Corresponding wavelengths will be scattered out more, others less
- Deformed Bragg edge pattern
- Rotation dependent be carefull in tomography
- Rather qualitative (only March-Dollase texture can be treated mathematically)
- But spatial resolved combine with traditional texture determination

Experimentally determining diffraction strength for each sample orientation in eulerian cradle

Texture example

101

Lehmann, E.; Peetermans, S.; Josic, L.; Leber, H. & van Swygenhoven, H. Energy-selective neutron imaging with high spatial resolution and its impact on the study of crystallinestructured materials. *Nuclear Instruments and Methods in Ph Research, Section A,* **2014**, *735*, 10

Weld on rolled aluminium

Orientation map from electron microscopy

Surface mapping ~ 1day

Increased sensitivity / transmission

- Increased transmission just past the Bragg cut-off
- Maximum attenuation just before the Bragg cut-off: highest sensitivity to small amounts

Sensitivity example

Sample	H/Zr ratio	
8	0	
9	0.127	
10	0.268	
11	0.312	
12	0.418	
13	1.924	

Hydrogen content in Zirconium (LOCA accidents NPP, e.g. Fukushima)
The colder the spectrum, the more sensitive to small amounts of H¹

The colder the spectrum, the more sensitive to small amounts of H: NEUTRA – ICON – BOA

Samples: M. Grosse, KIT Experiment: P. Vontobel, A. Kaestner, S. Peetermans, T. Panzner, PSI Analysis: P. Vontobel, PSI

Quantitative neutron imaging

White beam problems...

Beam hardening

Scattered neutrons still hit the detector behind the sample

Scattering contributions

Dominant coherent elastic scattering

suppressed past Bragg cut-off

Transmission through sample overestimated Cross-section underestimated

Short wavelengths attenuated more

Thickness increases

- \rightarrow colder beam
- \rightarrow lower effective cross-section

Quantitative neutron imaging

White beam problems

Single crystal: Bragg dips

Position: crystallographic phase, crystal orientation

Width: crystal quality (mosaicity)

Single Crystal(lite)

PAUL SCHERRER INSTITUT

Single Crystal: Bragg dips

Example: monochromatic imaging of the Mont-Dieu meteorite

