Celebrating Physics with a Good Excuse", Symposium at PSI July 3 – 6, 2017, Paul Scherrer Institut

New Phases of Magnetic Quantum Matter

Christian Rüegg, Division Research with Neutrons and Muons, Paul Scherrer Institute and Department of Quantum Matter Physics, University of Geneva, Switzerland

Materials with arrays of quantum spins forming well-defined lattices serve as model systems to study the phases of correlated magnetic quantum matter. Neutron and X-ray scattering are unique tools for high-precision studies of such phases and of their correlations and excitations with high energy and momentum resolution. We investigate elementary quasi-particles and their stability under static multi-extreme conditions in temperature, magnetic field and pressure in frustrated and low-dimensional magnets. In one-dimensional ladder systems with and without frustration, we control and observe single- and multi-particle excitations and their decay using fundamental symmetries. In the two-dimensional frustrated Shastry-Sutherland lattice, pressure is used to control directly the frustration and stability of quasi-particles resulting in novel quantum phases near (deconfined) quantum critical points. The results will be discussed in the context of recent developments in computational physics and neutron instrumentation.