

	What you will learn about	2
Basic Equ	ations	
Overview	of Techniques	
 X-ray Sca 	ttering Processes:	
 Compte 	on Scattering	
– Thoms	on Scattering	
 Photoe 	lectric Absorption	
Atomic Sc	attering Factors	
 Refractive 	Index	
 Refraction 	and Reflection	
 Absorption 	ı	
 X-ray Fluc 	prescence vs. Auger Emission	
Coherence	e	

The scattering amplitude
$$f(Q)$$
 from an atom
(containing Z electrons) at an angle 20 relative to
incoming beam:
$$f(Q) = \int_{\text{atom}} \rho(r) \cos(Q \cdot r) dr$$
Or, more compactly for distributions with spherical
symmetry:
$$f(Q) = \int_{\text{atom}} e^{iQ \cdot r} \rho(r) dr$$
Electron Density

ETH CE X-ray Fluorescence - Notation ³²

Barkla assigned letters, starting at K in case there might be a more energetic series:

K, L, M....: n = 1, 2, 3...

Relaxation of an electron to the K-shell \rightarrow K x-rays

Relaxation of an electron to the L-shell \rightarrow L x-rays....

Suffixes, greek

 α , β : Electron drops from L-shell, M-shell etc. At least for K shell...see next slide!

Suffixes, number

1: from l + 1/22: from l - 1/2Where l is the shell from which the electron drops e.g. $K_{\alpha 2}$ http://ie.lbl.gov/xray/xrf.htm

ETH C X-ray Fluorescence - Notation ³⁴							
	Zielniveau	Ursprungsniveau	IUPAC	Siegbahn			
With Siggbahn notation: the	К	L ₃	$K - L_3$	$K\alpha_1$			
	ĸ	L ₂	$K - L_2$	$L\alpha_2$			
scheme to assign the greek	ĸ	M ₃	$K - M_3$	$K\beta_1$			
lattore and numbers is not	ĸ	M ₂	$K - M_2$	$K\beta_3$			
	ĸ	N ₃	$K - N_3$	$K\beta'_2$			
completely clear.	ĸ	N ₂	$K - N_2$	κβ ₂			
	L ₃	<i>M</i> ₅	$L_3 - M_5$	$L\alpha_1$			
As a result of this less	L ₃	M ₄	$L_3 - M_4$	$L\alpha_2$			
intuitivo docionation	L3		$L_3 - M_1$				
intuitive designation, a		N14	$L_2 = M_1$	$L\rho_1$			
second notation from the	L ₂	M ₁	$L_2 = M_1$ $L_2 = M_2$	18.			
International Union of Pure	1	Ma	$L_1 = M_3$ $L_1 = M_2$	L BE			
	12	NE	$L_2 - N_E$	LBa			
and Applied Chemistry	 L3	Na	$L_3 - N_4$	$L\beta_{15}$			
(ILIPAC) is recommended	L ₃	N ₁	$L_3 - N_1$	$L\beta_7$			
	L ₂	N ₄	$L_2 - N_4$	$L\gamma_1$			
that clear identifies the	L ₂	N1	$L_2 - N_1$	$L\gamma_5$			
transitions	L ₁	N ₃	$L_1 - N_3$	$L\gamma_3$			
	L ₁	N ₂	$L_1 - N_2$	$L\gamma_2$			
	M ₅	N ₇	$M_{5} - N_{7}$	$M\alpha_1$			
	M ₅	N ₆	$M_5 - N_6$	$M\alpha_2$			
	M4	N ₆	$M_4 - N_6$	Mβ			
https://lp.uni-goettingen.de/get/text/6634	<i>M</i> ₃	N ₅	$M_3 - N_5$	$M\gamma$			

