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3. Synchrotrons 

Synchrotron Basics

1

• Overview of a Synchrotron Source

• Losing & Replenishing Electrons

• Storage Ring and Magnetic Lattice

• Synchrotron Radiation

Flux, Brilliance and Emittance

• Bending Magnets, Insertion Devices

What you will learn about… 2
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Overview

P. Willmott
Intro to Synchr. Rad.

Listen!
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Overview

• Electron source: Hot filament, thermionic emission
• LINAC: accelerate to ~ 100 MeV & inject into booster ring
• Booster ring

– Accelerates electrons to storage ring energy 
– Inject into storage ring to maintain storage ring current

• Storage ring
– Energy in GeV range 
– Contains: 

• RF cavity 
• Bending magnets 
• Insertion devices
• Focusing magnets

4
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Radiation from Relativistic Electrons

• Sweeping searchlight: narrow light beam radiating in same direction 
as electron motion, tangential to electron path

• Angular frequency (rad/sec) 0 = 2 (v/2r) = v/r ≈ c/r

• NB: 300 m storage ring with 50 m straight sections 2r  250 m

• Electron kinetic energy ߝ ൌ ଶܿ݉ߛ	 where ߛ is the Lorentz Factor
• Electron rest-mass energy: ݉ܿଶ ൎ 511	ܸ݇݁ ߛ ൌ ሿܸ݁ܩሾ	ߝ1957
• Divergence ଵିߛ	~	ߠ  0.5-0.06 mrad for 1-8 GeV

1 mrad ~ 0.057, so ߠ ൌ 0.03-0.003

ݒ ≪ ܿ ܿ~ݒ

ߠ

P. Willmott
Intro to Synchr. Rad.

5Line-by-line…

Pencil Beam & Doppler Effect

Doppler effect

– Observer sees electron move along observation axis 
with a velocity __________

– Wavelength hugely relativistically compressed as   _

– In observers frame of reference: large Doppler shift ≡
________________________________________

ݒ
ݒ

ߠݏ݋ܿݒ

ߠ

P. Willmott
Intro to Synchr. Rad.
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Fill in 
the Gaps!
Fill in 
the Gaps!
Fill in 
the Gaps!
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The Lorentz Force, A Reminder…

http://hyperphysics.phy-astr.gsu.edu
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Storage Ring – Magnetic Lattice 9

Listen!
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Storage Ring – Magnetic Lattice

Magnet Lattice is an array of magnets that maintain electrons 
on closed path via the Lorentz force: F = e v x B

1. Bending magnets
 Dipole magnets

• Closed path 
• Emit synchrotron radiation 

2. Focusing optics 
• Quadrupole magnets

focus & compensate for Coulomb repulsion
• Sextapole magnets

correct chromatic aberration from quadrupoles

3. Insertion devices 
• Wigglers 
• Undulators 
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Storage Ring – Magnetic Lattice

ELETTRA Storage Ring
http://www.danfysik.com

APS Bending Magnet
http://en.wikipedia.org

Quadrupole, 
sextapole and 
dipole magnets

11
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Radiated Power Loss

Stated without derivation:

Storage 
Ring 

Energy

Radiated power 
from a circular 
arc of length L

Magnetic 
Field 

Strength

Current

circular arc 
length 

• Power loss ~ 1 MW (106 W) @ 400 mA storage current

• For each circuit:

Energy drop ~ 2.5 MeV

~ 0.1% of electrons’ kinetic energy

12

Radiated Power Loss

• In order to maintain path of electrons, balance of Lorentz & 
Centripetal Force:

FL = e v x B and Fc = mv2/r

• Without help, electron will spiral in and collide into inside wall 
of vacuum storage ring 

• Therefore need to compensate for power loss (due to energy 
lost by electrons) by pumping energy back into the 
electrons…..

• Use an RF (“klystron”) cavity supplies electrons with energy 
each time it goes round

14Line-by-line…
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RF Power Supply and Bunching

P. Willmott
Intro to Synchr. Rad.

• Restock electron KE
using a “klystron” 

• Electric field across 
cavity 

• If electrons enter cavity 
at right moment in RF 
cycle, they are 
accelerated 
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RF Power Supply and Bunching
P. Willmott
Intro to Synchr. Rad.• On average, electron needs eVref

energy boost for each circuit 

• If electron dissipates 

more energy, enters klystron at
later point “A”  gets extra kick 

less energy, too fast  & enters at 
“B” in  gets less accelerated 

• Outside certain range  lost to 
system

• Self-correcting  electron 
bunches associated with cycle of 
RF cavity

16
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Filling Modes

 Time resolved studies using electron bunches:

Normal bunch mode

Hybrid mode
 Allows other beamlines to run at 
reasonable average photon fluxes

Single bunch mode

P. Willmott
Intro to Synchr. Rad.

17

Flux and Brilliance

Flux: number of photons per second per unit bandwidth passing through a 
defined area.

Important measure for experiments where the entire, unfocussed beam is 
used, e.g tomography

ݔݑ݈ܨ ൌ
ݏ݊݋ݐ݋݄݌

.݀݊݋ܿ݁ݏ ݄ݐ݀݅ݓܾ݀݊ܽ	0.1%
ݔݑ݈ܨ ൌ

ݏ݊݋ݐ݋݄݌
.݀݊݋ܿ݁ݏ ݄ݐ݀݅ݓܾ݀݊ܽ	0.1%

݈݈݁ܿ݊ܽ݅݅ݎܤ ൌ
ݏ݊݋ݐ݋݄݌

.݀݊݋ܿ݁ݏ ݀ܽݎ݉.݁ݖ݅ݏ	݁ܿݎݑ݋ݏ	ܽ݁ݎܽ	ݐ݅݊ݑ ݄ݐ݀݅ݓܾ݀݊ܽ	0.1%.
݈݈݁ܿ݊ܽ݅݅ݎܤ ൌ

ݏ݊݋ݐ݋݄݌
.݀݊݋ܿ݁ݏ ݄ݐ݀݅ݓܾ݀݊ܽ	%2.0.1݀ܽݎ݉.݁ݖ݅ݏ	݁ܿݎݑ݋ݏ	ܽ݁ݎܽ	ݐ݅݊ݑ

Brilliance: how flux is distributed in space and angular range (phase-space). 

Note: Emittance = source size x beam divergence (in the same plane)

Want emittance as low as possible, with very small source size and x-rays 
as parallel as possible.

Dependent on x-ray optics and important for experiments where tight and 
parallel focusing is needed, e.g., protein crystallography, STXM, XRF 
mapping, … 

Flux & Brilliance indicate quality of beamline facility:

18
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Synchrotrons & Brilliance

Source: DESY
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Write this
down!

Emittance

P. Willmott
Intro to Synchr. Rad.

21

Listen!
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Emittance

Emittance = source size x beam divergence

• Want emittance as low as possible  small source size and 
x-rays almost parallel

• x and y are the standard deviations of Gaussians describing
the beam profile

• ߳x > ߳y because magnet lattice acts on x  spread of energies

• Pairs of alternating vertical and horizontal quadrupole
magnets refocus e’s and bring to ideal orbit, so that ’x is 
small

22

Bending Magnets
P. Willmott
Intro to Synchr. Rad.

• Mainly to keep electrons on a closed path 

• B ~ 1 Tesla 

• Radiation fan 

– Vertical divergence: 1/
– Horizontal: angular change in path of e’s ~ 10o

• Superconducting “superbend” ~ 5 Tesla

– Flux  B2  25 x more flux

• Bending magnets produce broadband radiation 

23Line-by-line…
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Insertion Devices

• Array of alternating N-S/S-N magnets  electrons oscillate 

• Wigglers: large angular deviations (>1/)

• Undulators: smaller angular deviations (൑ 1/

P. Willmott
Intro to Synchr. Rad.

P. Willmott
Intro to Synchr. Rad.
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Insertion Devices

Radiation cones do 
not overlap and 
intensities are added

Radiation cones 
overlap and interfere 
and amplitude peaks 
where interference is 
constructive

P. Willmott
Intro to Synchr. Rad.
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Features of Undulator Spectra

Relativistic energy parameter: 

Undulator spatial period: u

K = max , where max is the maximum angular 
deviation of electron oscillations

The condition for constructive interference:

݊u ൌ
u

ଶߛ
1 ൅

ଶܭ

2

 Peaks equally spaced in energy E, where:

ܧ∆ ൌ
ଶߛ2݄ܿ

u 1 ൅ ଶܭ

2
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Features of Undulator Spectra

Undulator spectrum:

Peaks (energy bands) referred to as ________, which 
result from ________ ________ of amplitudes 
(_________ interference) of radiation created at each 
bend. 

Spectrum tuned by changing __, i.e. changing the ____
between the two set of magnetic poles and therefore the 
________ _____ ________.

K ↑ as undulator gap is ______.

27

Fill in 
the Gaps!
Fill in 
the Gaps!
Fill in 
the Gaps!
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Features of Undulator Spectra

P. Willmott
Intro to Synchr. Rad.

• Odd harmonics dominate 

• Low K undulator:
even harmonics are suppressed, 
low harmonics strongest and 
dominated by n = 1

• High K undulator (closing 
undulator gap): higher harmonics 
start to dominate, even 
harmonics become more 
prevalent 

• Width of peaks proportional to 

– 1/N (N = number of periods)

– 1/n (n = harmonic number)

29Line-by-line…

A real undulator spectrum

Protein crystallography beamline, SLS with  u = 19 mm

P. Willmott
Intro to Synchr. Rad.

30
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Tuning Undulators

Close undulator gap: 

 Increases B0

 Increases K 

 Increases A, the electron oscillation amplitude

31

Optimizing Undulator Parameters

Different harmonics used in different energy ranges:

Access high harmonics with small u, high K…
…(using small undulator gap). 

Soft x-rays with large u, low K (using large gap). 

K = 1.5, N = 70 periods, 3 GeV and 200 mA
 on axis peak intensity for 5th harmonic of

4.05 x 1017 photon.s-1.0.1%BW-1

For a typical undulator source size (150 x 20 mm2), brilliance:
 brilliance:

1.35 x 1020 photons.s-1.mrad-2.mm-2.0.1%BW-1

32
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SASE
Self Amplified Stimulated Emission

• Requires

– Super-low emittance electron beam 

– Very long undulator: few 100 m 

• Electrons in beam begin to interact with the EM radiation 
they have produced themselves

Light Beam

Electron Trap

Magnetic Structure

Original source: DESY

Electron Source & 
Accelerator

33

SASE

Non-Coherent 
Bunch

Coherent 
Bunch

P. Willmott
Intro to Synchr. Rad.

B

FL

v

v

FL

B
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Electron beam modulated longitudinally with a period = 

• Light beam generated is parallel & overlapping with electron beam 

• B-field of EM radiation couples with transverse component of 
electron motion 
 Lorentz force acting on e-s in axial direction producing bunching

ఒ೘ೌ೒೙೐೟	೛೐ೝ೔೚೏೔೎೔೟೤

ఊ
= emitted

• Microbunches (containing 108-109 electrons) emit coherently 
intense & fully coherent radiation

• N electrons contained in a region shorter than the wavelength of the 
radiation emit coherently and intensity, I  N2 

(for incoherent emission, I  N)

• Increasing light intensity increases bunch density modulation
 Increases coherence even more  runaway effect !!! 

SASE P. Willmott
Intro to Synchr. Rad.

35Line-by-line…

SASE

• 9  orders of magnitude greater radiated power than in conventional 
3rd generation synchrotron sources

• Microbunch duration: few fsec to few 10’s fsec  track ultrafast 
processes such as atomic vibrations

P. Willmott
Intro to Synchr. Rad.
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Brilliance

P. Willmott
Intro to Synchr. Rad.
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