

ETH Features of Undulator Spectra

26

Relativistic energy parameter: y

Undulator spatial period: λ_u

 $K=\phi_{\max}\gamma$, where ϕ_{\max} is the maximum angular deviation of electron oscillations

The condition for constructive interference:

$$n\lambda_{\rm u} = \frac{\lambda_{\rm u}}{\gamma^2} \left(1 + \frac{K^2}{2}\right)$$

 \rightarrow Peaks equally spaced in energy $\Delta E,$ where:

$$\Delta E = \frac{2hc\gamma^2}{\lambda_{\rm u} \left(1 + \frac{K^2}{2}\right)}$$

Tuning Undulators

$$K = \frac{eB_0}{mck_u} = 0.934 \lambda_u [\text{cm}] B_0[\text{T}]$$
Close undulator gap:
> Increases B_0
> Increases K
> Increases A, the electron oscillation amplitude

$$A = \frac{K\lambda_u}{2\pi\gamma}$$

Image: Soft x-rays with large $\lambda_{u'}$ low K (using large gap).32323232323243233323

