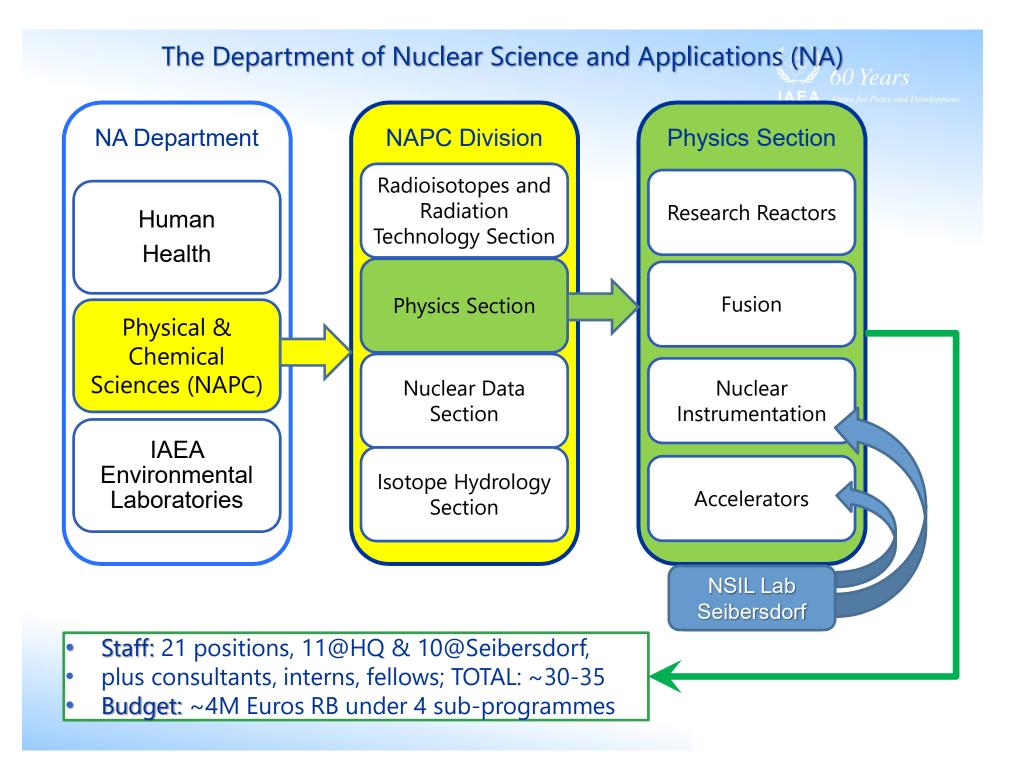
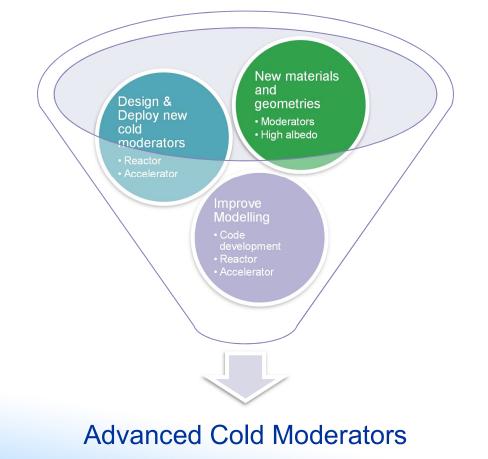


Ian Peter Swainson, Nuno Pessoa Barradas, Danas Ridikas IAEA Activities Regarding Neutron Beam Instrumentation


IAEA Division of Physical and Chemical Sciences Physics Section Vienna, Austria

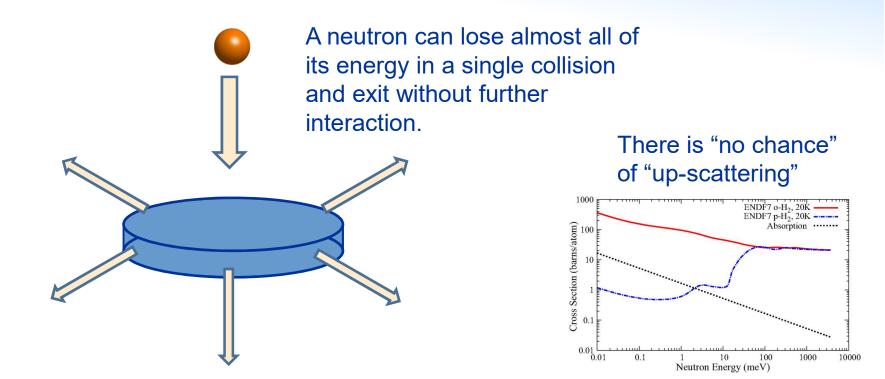
Organization

- Director General's Office for Coordination (DGOC) includes the secretariat of the policy-making organs, legal affairs, internal oversight services and press and public information.
- Departments (6)



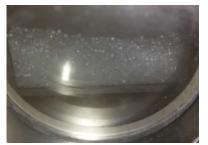
Activities in Support of Neutron Scattering

Coordinated Research Projects Technical Meetings Training Workshops Round Robin standards exercises Online training **Coordinated Research Project**

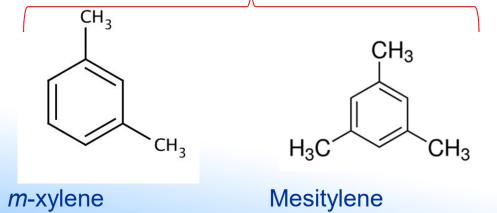


F12026: Advanced Moderators for Intense Cold Neutron Beams in Materials Research

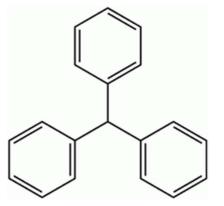
Rods, pancakes, butterflies


Instruments can be packed efficiently around the pancake

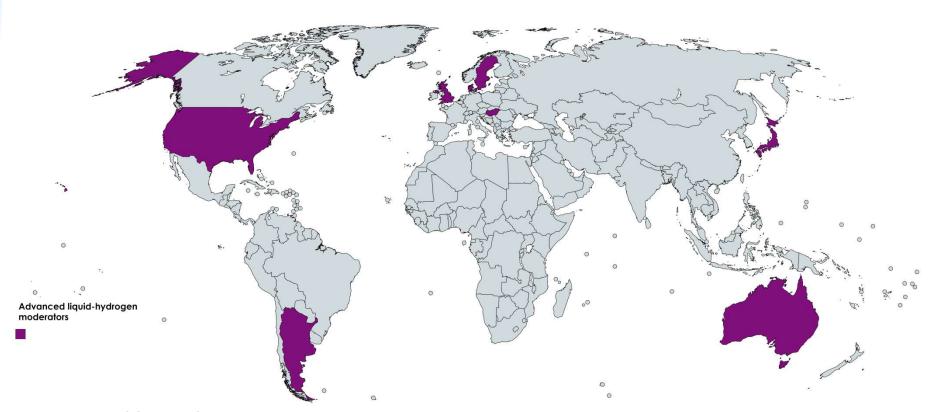
- ESS/STS liquid hydrogen moderators are low-dimensional: >99 % p-H₂
- Promise up to 5× better brightness


Pelletized cold moderators

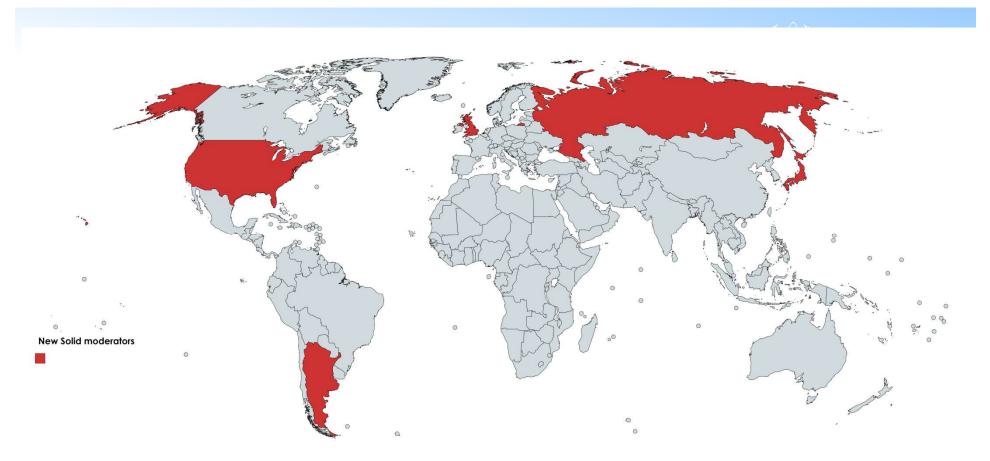
- Phenyl rings provide resistance to free radical induced radiolysis.
- Molecules with high-H concentration and low-frequency external modes and internal degrees of freedom are required.



Mixture currently used at JINR, Dubna



(1,3-dimethylbenzene) (1,3,5-trimethylbenzene)



triphenylmethane

Argentina (CNEA): cross-sections and scattering kernels Australia (ANSTO): design of optimized *I*-H₂/D₂ composite moderator for OPAL Denmark (ESS) Measurements of flat moderators at JSNS Hungary (BNR): Design, construction, testing of *p*-H₂ moderator at reactor, pinhole camera for flux distribution measurement UK (ISIS) Historical data to determine *o/p* ratios in operating moderator USA (ORNL-SNS):modelling of moderators; Raman spectra for *o/p* ratio Japan (JAEA): transmission measurements; measurement of brightness distribution in operating moderator Sweden (ESS) modelling of moderator/target performance of p-H2. Raman setup

Argentina (CNEA): cross-section measurements and scattering kernels for TPM, mesitlyene/xylene mixtures Japan (J-PARC): Transmission measurements of TPM UK (ISIS): cross-section measurements of TPM USA (Indiana): cross-section measurements TPM Russian Fed'n (JINR-Dubna): Pelletized moderator design, construction, testing TPM, mesitlyene/xylene mixtures

TECHNICAL MEETINGS

Can be one-off or series of meetings on a topic of current interest.

Technical Meeting on Guidelines on Establishment and Optimization of Cold Neutron Sources in Research Reactor and Accelerator Facilities

1-4 October 2018 in Vienna, Austria.

- To produce a guide on how a country considering the installation of such a facility for the first time would go about structuring such a project, e.g.; the choice of moderator material, resources required (human, financial); design (including neutronics, mechanical; thermohydraulics; planning for replacement) safety and licensing; and processes involved in installation, commissioning and operation.
- **PURPOSE OF THE MEETING:** The intent of this meeting is to gather the operational experience and lessons learned from established sites and personnel to lead towards the production of an IAEA report.
- **TARGET AUDIENCES OF THE REPORT:** Managers with interest in establishing such a facility; project managers in the process of planning or executing such a project, reactor engineers and neutron scientists, as well as regulators.
- **REPORT STRUCTURE:** The report is intended to be a highlevel overview with references to detailed technical reports. The intent is to include an updated world-directory of expertise to as an aid in project development.

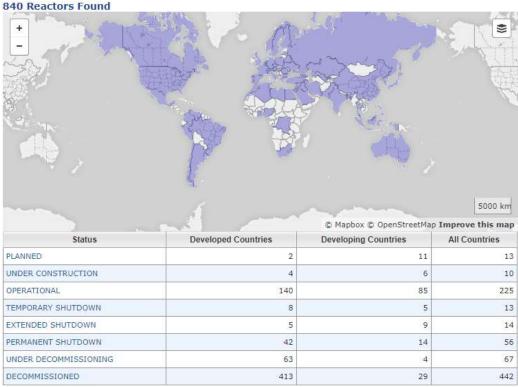
Technical Meeting on Modern Neutron Detection 4-8 September 2017

More than 40 participants from 20 countries

Session A: Detector Materials and Special Detection Techniques Chair: Kanai Shah **Session B: Neutron Metrology and Calibration** Chair David Thomas Session C: Spectral Unfolding Chair: Harry Ing Session D: Rem meters and Monitors Chair: Thomas McLean Session E: Detection of Thermal and Subthermal Neutrons Chair: Eberhard Lehmann Session F1: High-Resolution Spectroscopy **Chair: Vincent Gressier** Session F2: Low-Resolution Spectroscopy **Chair: Nolan Hertel** Session G: Fusion Chair: Lee Packer

- The purpose of the meeting is to bring together experts from various fields in which neutron detection is used, and to initiate the development of an IAEA report that will cover the current state of the art in neutron detection and provide a 5–10 year outlook on technologies in this field.
- The meeting outputs will include individual papers from the contributors, which will be incorporated into an IAEA report covering the topics discussed.

DATABASES

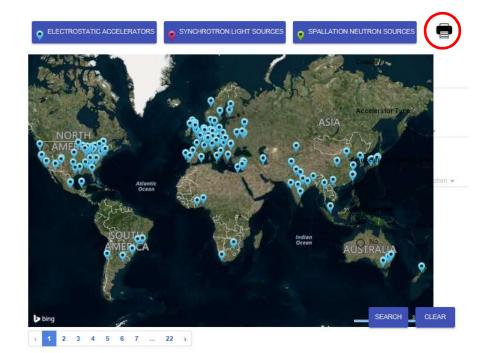

Attempt to summarize facilities of interest

Research Reactor Database (RRDB)

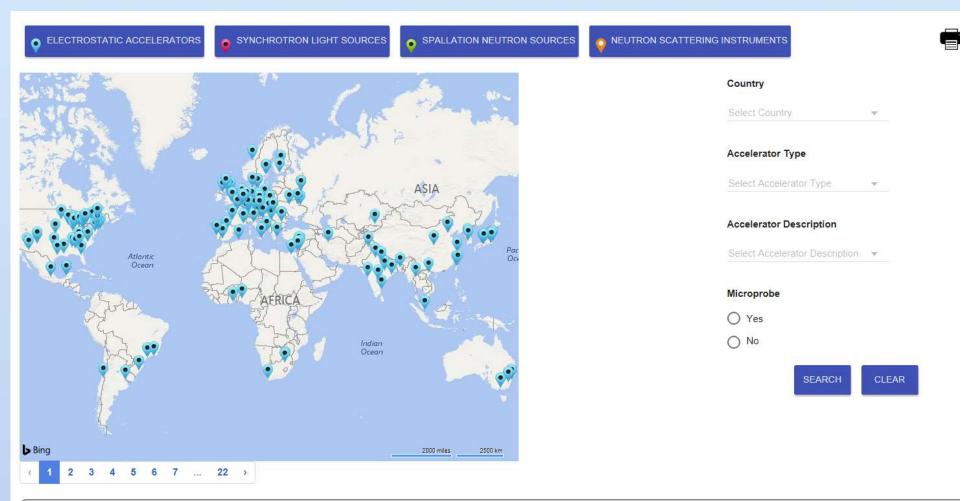
Clickable map Info on fuel, utilization, status, etc

https://nucleus.iaea.org/RRDB/RR/ReactorSearch.aspx?rf=1

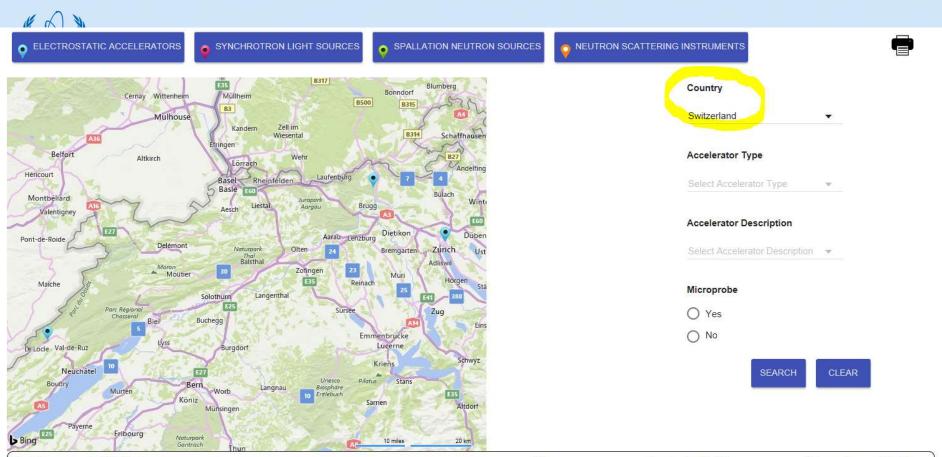
Accelerator Knowledge Portal 60 Years


Search by

- Region
- Country
- Accelerator type


Save results in pdf (map & list)

Interactive Map of Particle Accelerators around the world


Click on a tabl to define a type of accelerator, select parameters to refine your search. The search results can be exported by clicking on the "PRINT" icon.

Facility Name	Country	С
"Sokol" Accelerator of Department of Analytical Research, Environment and Radiation Technology, NSC KIPT	Ukraine	к
AMS/IBA system - University of Utrecht	Netherlands	U
Accelerator Mass Spectrometry Laboratory - University of Arizona	United States of America	т
Accelerator Mass Spectrometry Laboratory - University of Arizona	United States of America	Т

Country	Facility Name	City	Accelerator Details	Microprobe	Email
Algeria	Centre de Recherche Nucleaire d'Alger	Algers	4MV Single-ended Van de Graaff	No	0
Argentina	Comisión Nacional de Energía Atómica	Buenos Aires	20MV Single-ended EN-FN-MP-UD	Yes	0
Australia	Australian National University	Canberra	1,7MV Tandem Van de Graaff	No	0
Australia	CSIRO Nuclear Microprobe	Melbourne	5MV Tandem Van de Graaff	Yes	0

Country	Facility Name	City	Accelerator Details	Microprobe	Email
Switzerland	University of Applied Sciences of Western Switzerland, Haute Ecole Arc Ingénierie	La Chaux-de-Fonds	1,7MV Tandem Dynamitron	No	0
Switzerland	PSI/ETH Compact Radiocarbon Dating Facility	Zurich	0,5MV Tandem Pelletron	No	0
Switzerland	PSI/ETH Compact Radiocarbon Dating Faculty	Zurich	6MV Tandem EN	No	0
Switzerland	INFN Pisa / Paul Scherrer Institute	Villigen	1MV Tandem Dynamitron	No	0

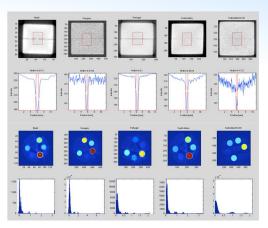
Neutron scattering instruments

Title	Name of the Facility	City	Country	Instrument Name	Instrument type	Facility Status	Neutron Energy	Comment	Power (MW)
TU Wien Atominstitut	TRIGA-MARK II Reactor	Vienna	Austria	KWS	uSANS	Available	Thermal		0.250
TU Wien Atominstitut	TRIGA-MARK II Reactor	Vienna	Austria	Radiographie	Imaging	Available	Thermal		0.250
TU Wien Atominstitut	TRIGA-MARK II Reactor	Vienna	Austria	Interferometer	Interferometer	Available	Thermal		0.250
TU Wien Atominstitut	TRIGA-MARK II Reactor	Vienna	Austria	Polarimeter	Physics	Available	Thermal	polarised	0.250
				Pneumatic Transfer					
TU Wien Atominstitut	TRIGA-MARK II Reactor		Austria	System	AA/Irrad	Available	Thermal	NAA	0.250
TU Wien Atominstitut	TRIGA-MARK II Reactor		Austria	Test beamline	Other	Available	Thermal	polarised/unpolarised test beam	0.250
TU Wien Atominstitut	TRIGA-MARK II Reactor		Austria	Weisser Strahl	Other	Under Construction	Thermal	white beam	0.250
Nuclear Physics Institute, ASCR	Research Reactor LVR-15		Czech Republic		Strain scanner	Available	Thermal	Multipurpose 2-axis	10
Nuclear Physics Institute, ASCR	Research Reactor LVR-15		Czech Republic	HK6 MEREDITH	Powder diffractometer	Available	Thermal	Medium resolution	10
Nuclear Physics Institute, ASCR	Research Reactor LVR-15		Czech Republic		Strain scanner	Available	Thermal	High resolution 2-axis	10
Nuclear Physics Institute, ASCR	Research Reactor LVR-15		Czech Republic	HK8 MAUD	SANS	Available	Thermal	High resolution	10
Nuclear Physics Institute, ASCR	Research Reactor LVR-15		Czech Republic	HK3-a	Depth profiler	Available	Thermal		10
Nuclear Physics Institute, ASCR	Research Reactor LVR-15	Řež	Czech Republic	HK3-b	PGAA	Available	Thermal	PGAA	10
Nuclear Physics Institute, ASCR	Research Reactor LVR-15	Řež	Czech Republic		Other	Available	Thermal	Two-germanium detector system employed to study gamma-gamma coincidences of (n,g) reactions.	10
Nuclear Filysics Institute, ASCK	Research Reactor LVR-15	Rez	Czech Republic	HK3-C	Other	Available	mermai	Diffraction optics experiment (e.g. focusing Si	10
Nuclear Physics Institute, ASCR	Research Reactor LVR-15	Řež	Czech Republic	NOD	Test	Not open to users	Thermal	crystals.)	10
Institut Laue-Langevin	HFR Reactor	Grenoble	France	D2B	Powder diffractometer	Available	Thermal	Very high resolution.	58.3
Ŭ								2-axis diffractometer equipped with large microstrip detector. For real-time studies of	
Institut Laue-Langevin	HFR Reactor	Grenoble		D20	Powder diffractometer	Available	Thermal	very small samples.	58.3
Institut Laue-Langevin	HFR Reactor	Grenoble	France	D1B	Powder diffractometer	Available	Thermal	High intensity with 128 degree PSD.	58.3
Institut Laue-Langevin	HFR Reactor	Grenoble	France	D4	Powder diffractometer	Available	Hot	Large Q-range to allow characterization of local order of non-crystalline materials.	58.3
Institut Laue-Langevin	HFR Reactor	Grenoble	France	SALSA	Strain scanner	Available	Thermal	Dedicated to studies of residual stress.	58.3
Institut Laue-Langevin	HFR Reactor	Grenoble	France	D3	Single-crystal diffractometer	Available	Hot	Polarized instrument used to study magnetic structures.	58.3
Institut Laue-Langevin	HFR Reactor	Grenoble	France	D9	Single-crystal diffractometer	Available	Hot	Four-circle, high Q-range.	58.3
Institut Laue-Langevin	HFR Reactor	Grenoble	France	D10	Single-crystal diffractometer	Available	Thermal/Cold	Four-circle diffractometer with 3-axis energy analysis option.	58.3
Institut Laue-Langevin	HFR Reactor	Grenoble	France	D16	Diffractometer:#SANS	Available	Cold	Variable vertical focusing for the study of partially ordered structures such as intercalated layers.	58.3
		Cremobic	Tanoo		Single-crystal	/ wandoro		interoductor layers.	
Institut Laue-Langevin	HFR Reactor	Grenoble	France	D19	diffractometer	Available	Thermal	A large structure diffractometer.	58.3

Neutron Scattering Instruments DB

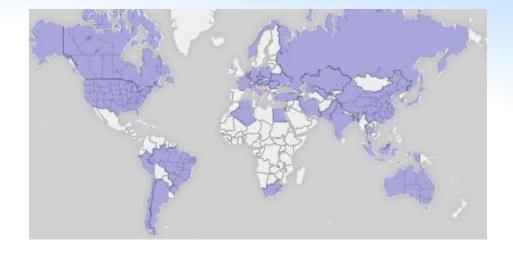
- Data originated from a survey conducted by NIST in 2017 from Peter Gehring/Dan Neuman.
- Attempting to preserve to see if there is interest
- Some sites are missing
- Does ISNIE find this useful? What information is missing in the current entries?
- Databases always require updates: if you find mistakes please tell us.

Research Reactor Section


Physics Section implements the utilization aspects of this program

Neutron Imaging: Round robin

2012-13, in cooperation with Paul Scherrer Institute (PSI), Switzerland

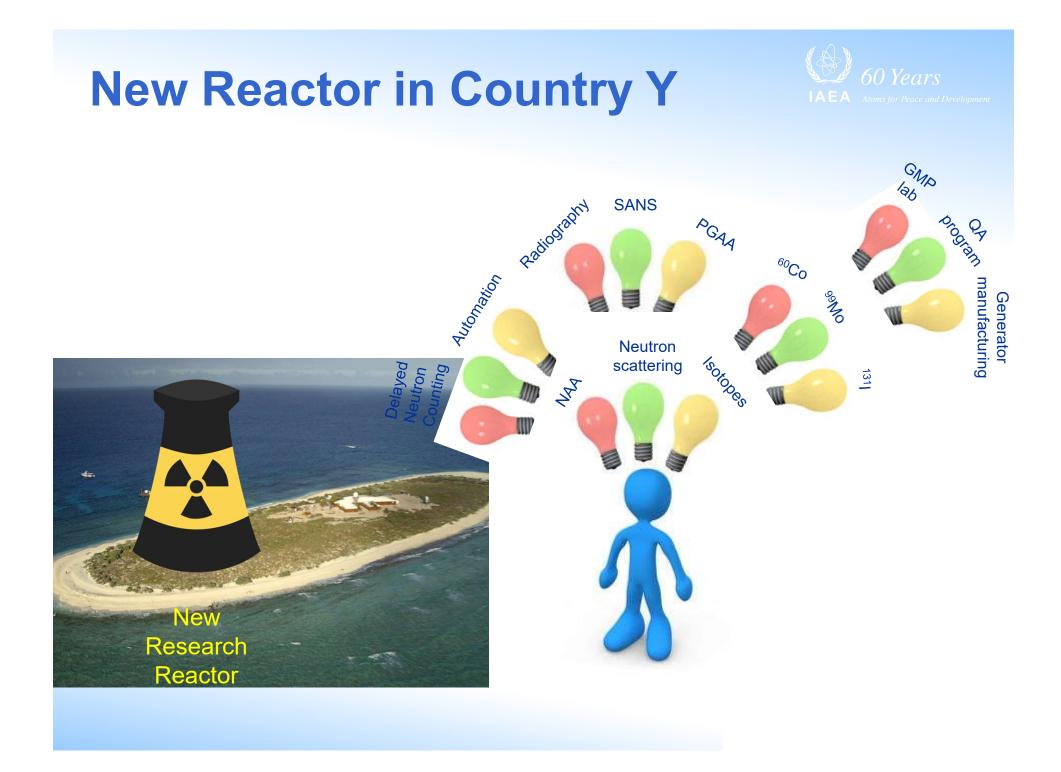

- Objective:
 - Test 2D contrast and resolution
- Means
 - Samples from PSI, guidelines and deadlines
 - Advice and evaluation
 - Results analysis
- Results:
 - Participation from 14 facilities world-wide
 - Good results achieved by 5-6 facilities
 - Deficiencies identified for 2-3 facilities
- New exercise initiated August 2018
 - In cooperation with PSI
 - Use improved samples/methodology
 - Test 3D contrast and resolution
 - 16 facilities to participate world-wide

Neutron Imaging: E-learning course

- Second most common analytical technique at RRs, after NAA
- Currently in development, release in CLP4NET in 2019

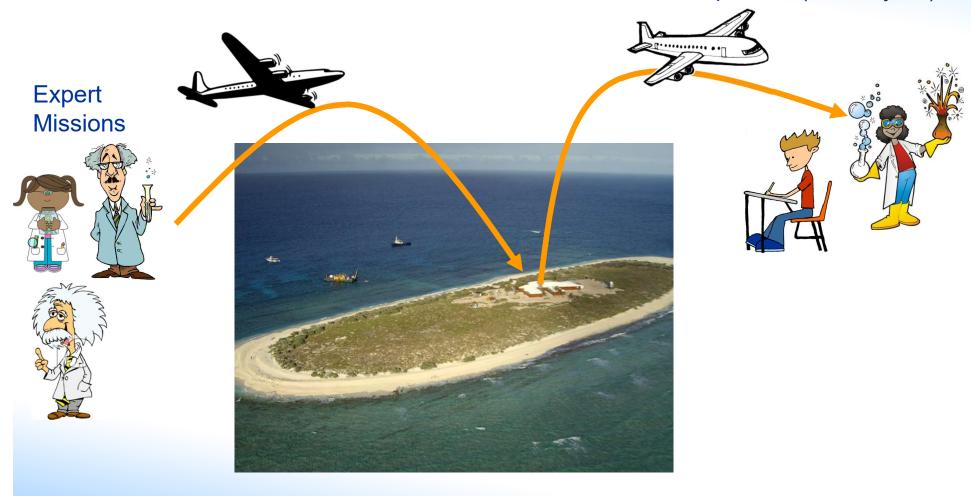
Dr Eberhard Lehmann

Dr Nikolai Kardjilov



Activity	Completion date	
Phase 1: Define course structure	31 October 2017	
Phase 2: Develop training materials	9 April 2018	
Phase 3: Review of training materials	16-18 April 2018	
Phase 4: Develop revised training materials	30 November 2018	
Phase 5: Test e-learning course	10-14 December 2018	
Phase 6: Implementation	2019	

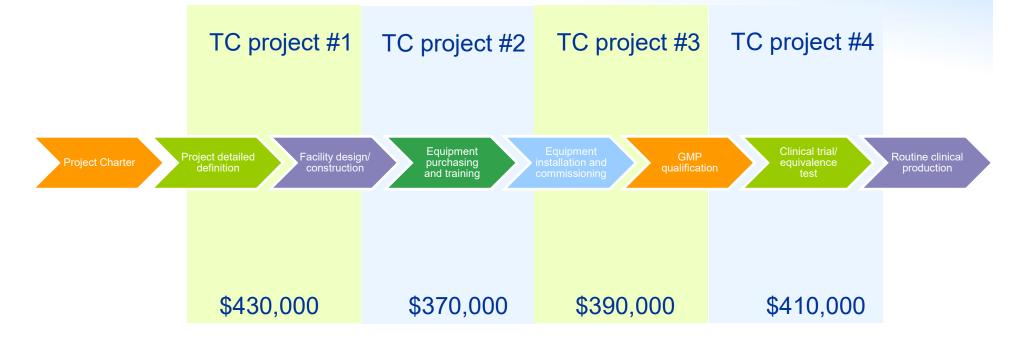
TECHNICAL COOPERATION PROJECTS


Where a society like ISNIE and its members could really be helpful

Knowledge Transfer

Scientific Visits (1-2 weeks) Fellowship Visits (month-year)

Home-Based Assignments



Small contracts; e.g. Write installation-specific documents; small custom design. All major contracts done through tender process (usu. lowest price, technically compliant)

Limitations: Typical TC project lifetimes and overall project

- TC projects 2-3 years may not match the timescale of a "real" overall project: e.g. routine clinical production of ¹³¹I-MIBG (targets, mgmt+regulatory approvals, hot cells + chemistry, GMP, clinical trial/bioequivalence tests, etc...)
- "Real" overall project is split into multiple TC "sub-projects"
- Cash flows may not always match overall project cash demands

Limitations: Knowledge Transfer

- Expert Missions cannot last years weeks
- Possibly fractured or contradictory advice
- CP and team need to gain knowledge and confidence to run the overall project coordination in country

ISNIE

A source of contacts for:

- expert missions;
- hosts of scientific visits/fellowships;
- project management experience;
- PM documents: WBS, Gannt charts etc;
- specifications for equipment;
- budgetary guidance
- equipment suppliers and trouble shooting;
- approved procedures, documentation, safety assessments;
- safety/regulatory advice;
- long-term support network.

Symposium of North Eastern Accelerator Personnel (SNEAP) SNEAP is a community of personnel

Hello Dear Sneapers,

Does anybody have experience related to the rescue/evacuation of people from the accelerator tank inside? Our NEC 20 MV accelerator, in Buenos Aires, Argentina, is inside a big vertical pressure tank (35 meter tall, 8 meter diameter). If a person doing maintenance on the annular platform or manlift (elevator moving within the column) has an accident or faints for whatever the reason, it could be a major problem to help him out of the tank. For this reason, all experience, procedure, standards or safety rules, list of necessary safety elements or related suggestions to share, will be very important for us.

Best Regards, Eng. Carlos Miguez Tandar accelerator, Buenos Aires. Argentina

SNEAPERs: For an upcoming project I need some more standard HVEC 9" OD tank flanges, preferably blanks, but I'll take whatever I can get. See attached pictures. I'll definitely pay for shipping if you have a few lying around and want to get rid of them. Thank you. Cheers!!! ----(AMS)----- Tom Miller

involved with electrostatic particle accelerators and their use. Founded in 1968, the organization gathers annually to discuss and exchange information to the benefit of all who attend. The topics covered include ion sources, electrostatic add rf accelerators, telemetry and control systems, cryogenic systems, safety issues and many other topics relevant to the operation of small to medium sized electrostatic accelerator laboratories.

Dear Sir

I am looking for a host laboratory for training on the operation, development and maintenance of particle accelerator type V.d. and Tendem. G This internship is funded entirely by IAEA and includes training costs for the host laboratory. If anyone can orient me I will be very grateful. Best regards

Dear Sir

El Instituto de Fisica of the Universidad Nacional Autonoma de Mexico are in operation 4 low energy accelerators: A 2 MV and 5.5 MV Van de Graaff (high voltage engenerring Co), a 3 MV tandem Pelletron (NEC) and one MV tándem (High voltage europe) AMS. The 5.5 MV vertical accelerator was donated from Rice University and I was responsible to move this accelerator and reinstalling in Mexico. This accelerator has been in operation since 1950 and I obtained a good experience is solving most of the problems to install and maintenance of the whole laboratory. I am available to host someone to be trained here. Please contact me if you are interested.

Sincerity yours

Dr. Eduardo Andrade Instituto de Fisica UNAM

ISNIE: Neutron Instrumentation Engineers without Borders?

Ē have a stand and have been and the best a shi tati sa

Thank you for your attention I.Swainson@iaea.org