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lon bombardment was used very successfully in the fast reactor
materials program to provide guidance on the compositional
dependence of void swelling of austenitic alloys before neutron

data became available.
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lon irradiation also showed correctly the role of Cr, Si, P, cold-working, etc.
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lon bombardment was used very successfully in the fast reactor
materials program to provide guidance on the compositional
dependence of void swelling of austenitic alloys before neutron
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lon irradiation also showed correctly the role of Cr, Si, P, cold-working, etc.

When conducted correctly, ion results also forecast the steady-state rate of
1%/dpa, independent of composition, cold-working, dpa rate, etc.




lon-induced swelling of austenitic and ferritic steels

Conducted at KIPT in Ukraine
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lon irradiation correctly forecast the different swelling
behavior of bcc Fe-Cr and fcc Fe-Ni-Cr alloys

Johnston et al., 1983
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lon irradiation correctly forecast the different swelling
behavior of bcc Fe-Cr and fcc Fe-Ni-Cr alloys

Johnston et al., 1983 Surface of Uranus 50 duplex alloy
irradiated at 625°C to 140 dpa
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However, there is not a one-to-one
correspondence between ions and neutrons.

* Primary difference is a very large difference in dpa
rates. Radiation-induced phase instabilities that
precede onset of steady-state void swelling.

Point defect balances are very sensitive to dpa rate,
leading to classic “temperature shift”.

Thermally-driven and radiation-driven phases are
known to have different rate constants compared to
that of point defects.

Stability of yittria-titania dispersoids probably
involves different rate constants.




However, there is not a one-to-one
correspondence between ions and neutrons.

* Primary difference is a very large difference in dpa
rates. Radiation-induced phase instabilities.

e But there are other very large differences we call
“neutron-atypical” variables.

Strong effect of nearby surface

Strong gradients in dpa rate (segregation)
Compressive stress state in swelling film
Injected interstitial effect -very strong!

Suppression of void nucleation and growth
Chemical modification by implanted ion
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 We can use ion bombardment to explore what factors
control swelling in ferritic-martensitic alloys.




However, there is not a one-to-one
correspondence between ions and neutrons.

* Primary difference is a very large difference in dpa
rates. Radiation-induced phase instabilities.

* But there are other very large differences we call
“neutron-atypical” variables.

Strong effect of nearby surface

Strong gradients in dpa rate

Compressive stress state in swelling film
Injected interstitial effect very strong!

* We can use ion bombardment to explore what factors
control swelling in ferrltlc-martensitlic alloys.

e Other issues: dpa definition, beam sweeping (rastering)




Calculation of dpa using SRIM code
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The methodology of application of computer simmlation technigue to the NSC KIPT advanced simulation studies
of radiation materials science at charged particles accelerators is considered with due account of the conformance of
simulation methods and algorithme to the working standards of nuclear engineerng. The ambizuities of dpa caleula-
fions by means of the SEIM code are demonstrated and analyzed using complementary simulations by means of the
FaT Monte-Carlo code. The refined guidelne of the SRIM dpa caleulations 1s presented.

1. INTRODUCTION

Ion beam simulation irradiation of structural maten-
zls iz used i NSC KEIPT [1-3] and worldwide [4] 2z a
valuable techmique of exprass assessment of their radia-
fion stabibity under nuclear reactor (n.7) nradiation. The
established standard practice of simulation smudies [5]
prescribes the caleulation of the number of atomic dis-
placements per atom (dpa defined [5] as “a wnit of ra-
diation exposure giving the mean number of fimez an
atom iz displaced from itz lattice site”) as an adopted
mefric of comelation of the radiabon damage relevant
effects in metals and alloys subjected to different iradi-
ation emviromments. This allows compansen of the re-
sults of accelerator and reactor based nradiations as well
as of those of different expermmental groups [4, 5].

The quantification of spatizlly dependent dpa 15 a
complicated radiation fransport problem mostly solved
by means of the Monte Carlo (MC) medeling software.
The SEIM package [6] i= 2 publicly available [7] practi-
cally standard [5] user-friendly tool of such kind of cal-
culations applicable to ~10™ ¥ keV ion beams mradia-
fion of planar layered targets. The TRIM MC code of
the SRIM package simulates depth profiles of uradia-
fion induced vacancy-interstifial Frenkel pairs (FPs) us-
mg the bmary collisions approximmation (BCA) method.
Under the assumption that each FP arizes in a single ato-
mic displacement, 2 common practics is to scale dpa at
a given ion fluence &, em”, with the vacancy profile
the TRIM code cutputs in the VACANCY TXT file.

The present paper addreszes the known issue of thus
code application to dpa calculatons. TRIM offers two
options for the FP distibutions simulation. The express
“guick damage " (QD) method simulates only the trajec-
tories of primary ions and the production of primary
knock-on atoms (PEAs). The total FP production rate iz
then calenlated analytically within the scope of the mo-
dified Emchin-Pease (E-P) [3, 9] model of the seconda-
1y displacement function (SDF) MT), the umber of the
secondary knock-on atoms (SKAs) produced by a PEA
of energy T at a user-supplied value of a stable FP pro-
duction threshold energy Es. The altemnative full casca-
des " (FC) damage MC simulation method simulates the
overall eollizion caseade explicitly down to certzin eut-
off energy E;, ~ 1 eV of BCA applicability. The num-
bers of FPs and atomic replacements are scored colhisi-
on-by-collision according to certain decision rules based
on the values of Ey and the lattice binding energy Ej.

The 1350e consists in the about twofold discrepancy

ISSN 1562-6016. BAHT. 2013. Ne2i34)

of the vacancies (and thus dpa) profiles simmlated by
means of the FC and QD methods (Fig. 1). The ratio 1=
teo kigh to rate it as a reasonable scattenng of the est-
mate of the same physical quantity. It 15 very probable
that the FC/QD methods deviate systematically.
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Fig 1. Depth profiles of the total numbsr of vacancies
produced under irvadiation of ferritic-martensitic steal
HT-0 by 1.8 MeV Chromium ions at the NSC EIPT
ESUTVT accelerator [2] as caleulated using rwo alterna-
tive damage simulation methods af the TRIM BCA code

Meither SRIM manuals [7] nor the ASTM simulation
standard [5] comment the origin of this difference. The
TREIM simulation methed (FC/QD) is seldom specified
m publications of expen alists. Thes 15 fraught with
misinterpretation of the measwred tradiation effect (5.2
swelling) m terms of the calenlated dpa, esp. sigmificant
for the topical case of ultra-lugh (300...600 dpa) dam-
age dose imadiation [2] of prospective reactor materials.

The goals of the present paper are: (1) to uncover
physical and alzorithmic reasons of the observed discre-
pancy and (it} to refine a guideline of the dpa rate caleu-
lations by means of the TRIM BCA code.

In zec. 2, we outlme the meaning of dpa in radiahion
matenal science (FMS) R&D and the methods/models
implemented in vanous codes {fmel. TRIM] for dpa cal-
culations. Smece TEIM is not an open-source software,
cerfain fine details of i1ts algorithms (the calculated dpa
seem to be sensitive to) are only poorly documented m
[6,7.10] and subjected to changes from one version of
the code to another. However, they are extractable from
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Both papers recommend that Kinchin-
Pease “quick” option of SRIM must be
used to match dpa calculated by SPECTER
code for neutron-induced dpa.



Three approaches are being used

* “Peel the onion” to isolate and identify each neutron-
atypical contribution without strong synergisms with
other contributions, especially compositional effects

Fe, Fe-Cr, Fe-Cr-solutes of increasing complexity
Effect of production variables: cold work, tempering
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* “Peel the onion” to isolate and identify each neutron-
atnplcal contribution without strong synergisms with
other contributions, especially compositional effects

Fe, Fe-Cr, Fe-Cr-solutes of increasing complexity
Effect of production variables: cold work, tempering

* Examine complex commercial and developmental
alloys to identify most promising paths for
improvement of alloy radiation resistance.



Comparison of swelling of various ferritic-
martensitic and ferritic-ODS alloys (KIPT)
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Three approaches are being used

* “Peel the onion” to isolate and identify each neutron-
atnplcal contribution without strong synergisms with
other contributions, especially compositional effects

Fe, Fe-Cr, Fe-Cr-solutes of increasing complexity
Effect of production variables: cold work, tempering

* Examine complex commercial and developmental
alloys to identify most promising paths for
improvement of alloy radiation resistance.

 Determine base behavior of alloy in absence of
helium/hydrogen introduction, and then add helium
and hydrogen as perturbations.

“The tail does not wag the dog!”




* Influence of beam-rastering

* Injected interstitial suppression of swelling

e Stability of various types of dispersoids
under irradiation



Choice of irradiation conditions

B Beam conditions: Rastering (beam sweeping) vs. defocused beam
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lon-induced swelling of pure iron at 50 dpa

3.5 MeV Fe*
450°C

(a) 15.63 Hz
(b) 1.95 Hz
(c) 0.244 Hz

(d) defocused beam




lon-induced swelling of pure iron at 150 dpa

3.5 MeV Fe*
450°C

(a) 15.63 Hz
(b) 1.95 Hz
(c) 0.244 Hz

(d) defocused beam




Depth dependence of swelling in raster-no-raster

experiments in pure iron at 450°C
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Depth dependence of swelling in raster-no-raster
experiments in pure iron at 450°C
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Swelling data extracted from here to
minimize the effect of injected interstitials.



Depth dependence of swelling in raster-no-raster
experiments in pure iron at 450°C
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Swelling rate comparison in raster-no-raster experiments
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Displacement profile calculated by SRIM code

1.8 MeV Crin Fe
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Strong suppression of void nucleation in pure iron

by injected interstitial
L. Shao, C.-C. Wei, J. Gigax, A. Aitkaliyeva, D. Chen, B.H. Sencer, F. A Garner, 2013
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Strong suppression of void nucleation in pure iron

by injected interstitial
L. Shao, C.-C. Wei, J. Gigax, A. Aitkaliyeva, D. Chen, B.H. Sencer, F. A Garner, 2013
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e ... and its effect may look very small...
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Change in point defect concentrations due to
forward scattering

e ... but its effects on void swelling are strong!
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1.80-05

Results — Point Defects

3.5MeV Fe*?, ImA, Imm? beam, 450C, E,,Y = 0.66eV

Point defects follow
SRIM forcing function

Time: 1&-09 saconds

1.70-05
1.6@-05 |
15e-05 |
14e-05 |

1.3e-05 |
1.2-05
1.1e-05 |
le-05
Fo-06 |
Bo-06 |
Ta-06 |
bo-06 |
5e-06 |

da-06 |

3a-04 |

2a-0& |

le-06

Depth (nm)

0
0 100 200 300 400 500 &00 FOO 8O0 SO0 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 20000

1.1e-05

Te-05

Fa-06 |

Point defects do not quite follow SRIM
forcing function

Time: le-09 seconds

= |nterstitials
= \/acancies
Damage Rate

be-06 |

5e-06 |

da-06 |

Ja-06 |

Depth (nm)

0 100 200 300 400 500 &00 FOO 8OO 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Without injected interstitials

With injected interstitials



Results — Vacancy Supersaturation

3.5MeV Fe*?, ImA, Imm? beam, 450C, E,,Y = 0.66eV

Peaks near maximum damage region Bimodal distribution, shifted to the left by
100nm
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Results — Void Nucleation Rate

3.5MeV Fe*?, ImA, Imm? beam, 450C, E,,Y = 0.66eV

Clearly peaks at maximum damage region
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Swelling (%)

Compare with Ex

3.5MeV Fe*?, ImA, 1mm?
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Depth dependence of swelling in MA957
at 900 dpa peak and 425°C
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Impact of injected interstitial on swelling of MA956

70 dpa
peak at
450°C

100 dpa
peak at
500°C
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MA956 at 450°C and 100 dpa irradiated with
1.8 MeV Cr* ions at KIPT




MA956: 3.5 MeV Fe* at 70 dpa peak and 450°C (TAMU)
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Voids are
generally
attached to the
interface between
oxide particles
and matrix.

Oxide particles
appear to be
decomposing.



MA956: 3.5 MeV Fe* irradiation at 70 dpa peak and 450°C

Oxide particles
appear to
becoming
amorphous.




MA956: 3.5 MeV Fe* irradiation at 100 dpa peak and 500°C

Oxide particles have dissolved in the irradiated region.




Novel alloy with dispersoids in both phases

* Residual ferrite:
— 10%, ~1um grains
o Martensite:
— 90%, ~200nm grains
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As recelved sample

Oxides are coarser in
martensite than they
are in ferrite.
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JNM, 2011

M artensite







Swelling much smaller in martensite phase

Peak DPA: 100 300/400 600
Real DPA: ~50 ~150/~200 ~300

Ferrite

Martensite




Swelling much smaller in martensite phase

Peak DPA: 100 300/400 600
Real DPA: ~50 ~150/~200 ~300

Ferrite

Martensite

No voids were found in the injected interstitial region.




Oxide particle size changes strongly with depth
but not with dpa level
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Oxide particle size decreases with dose

— As received
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Conclusions

lon irradiation can yield excellent insight on void
swelling and microstructural evolution.

It cannot provide good predictions of void swelling
INn neutron environments.

Proper use of ion bombardment requires an
understanding of neutron-atypical aspects.

It Is Important to use a non-rastered beam, to
calculate the dpa correctly and to avoid the
Injected interstitial region.
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