PSI Master School 2017

Introducing photons, neutrons and muons for materials characterization

Lecture 8: Neutron diffraction

Importance of nuclear neutron diffraction

- Structure determines physical properties
- Detailed knowledge of atomic positions and lattice symmetry is essential
- Structure is measured with elastic scattering: there is no energy transfer

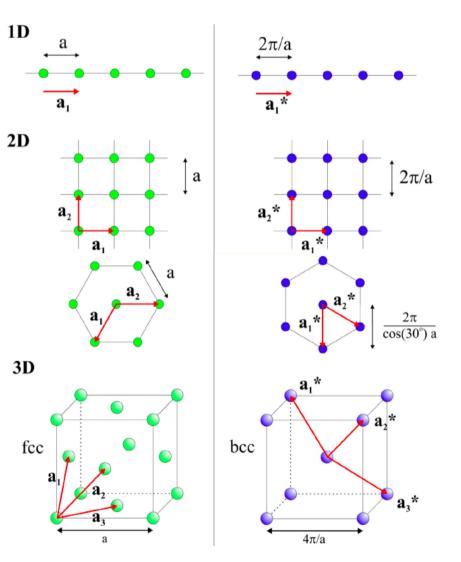
Bragg peak scattering in Bravais lattice

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{coh}} = \langle b \rangle^2 \sum_{j,j'} e^{-\imath \mathbf{Q} \cdot (\mathbf{R}_{j'} - \mathbf{R}_j)} \qquad \mathbf{Q} = \mathbf{k}_f - \mathbf{k}_i$$

 $r = R_{j'} - R_j$ and multiply with number of unit cell N₀ (assumption: only one type of atom with scattering length b on Bravais lattice)

$$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = N_0 \langle b
angle^2 \sum_{m{r}} e^{\imath m{Q} \cdot m{r}}$$

Perform sum over r:
$$\sum_{\boldsymbol{r}} e^{\imath \boldsymbol{Q} \cdot \boldsymbol{r}} = \frac{(2\pi)^3}{v_0} \sum_{\boldsymbol{\tau}} \delta(\boldsymbol{Q} - \boldsymbol{\tau})$$

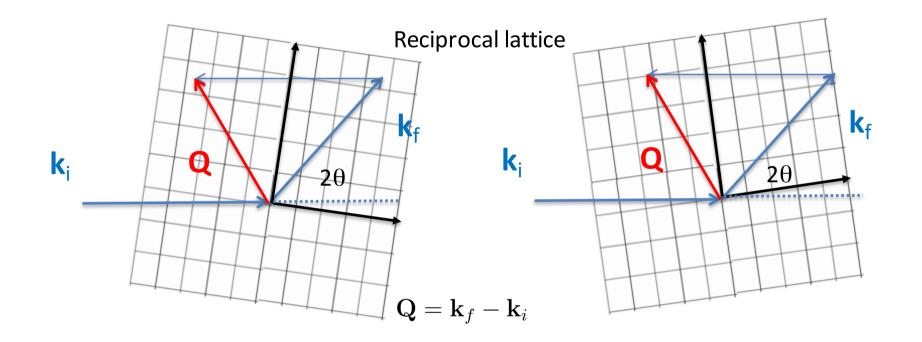

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = N_0 \frac{(2\pi)^3}{v_0} \langle b \rangle^2 \sum_{\boldsymbol{\tau}} \delta(\boldsymbol{Q} - \boldsymbol{\tau})$$

Reminder: reciprocal lattice

Lattice for "wave-vector space"

Connected with real space via Fourier transform

$$\mathbf{a}^{\star} = 2\pi \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}$$
$$\mathbf{b}^{\star} = 2\pi \frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}$$
$$\mathbf{c}^{\star} = 2\pi \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}$$


Bragg peak scattering in the non-Bravais case

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \sum_{j,j'} b_j b_{j'} \langle e^{-\imath \mathbf{Q} \cdot \hat{\mathbf{R}}_{j'}} e^{\imath \mathbf{Q} \cdot \hat{\mathbf{R}}_j} \rangle.$$

For a non-Bravais lattice the atomic positions are given by the position of the unit cell (lattice vector) plus relative position of the atom within unit cell

 $\begin{aligned} \boldsymbol{R} &= \boldsymbol{l}_{j} + \boldsymbol{d}_{\alpha} \\ \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= \sum_{j,j'} e^{i\boldsymbol{Q}\cdot(\boldsymbol{l}_{j}-\boldsymbol{l}_{j'})} \sum_{\alpha,\alpha'} b_{\alpha} b_{\alpha'} e^{i\boldsymbol{Q}\cdot(\boldsymbol{d}_{\alpha}-\boldsymbol{d}_{\alpha'})}. \\ & \text{using} \qquad \sum_{\alpha,\alpha'} b_{\alpha} b_{\alpha'} e^{i\boldsymbol{Q}\cdot(\boldsymbol{d}_{\alpha}-\boldsymbol{d}_{\alpha'})} = |\sum_{\boldsymbol{d}} b_{\boldsymbol{d}} e^{i\boldsymbol{Q}\cdot\boldsymbol{d}}|^{2} \\ \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= N_{0} \frac{(2\pi)^{3}}{v_{0}} \sum_{\boldsymbol{\tau}} |F_{N}(\boldsymbol{\tau})|^{2} \,\delta(\boldsymbol{Q}-\boldsymbol{\tau}) \\ F_{N}(\boldsymbol{\tau}) &= \sum_{\boldsymbol{d}} b_{\boldsymbol{d}} e^{i\boldsymbol{\tau}\cdot\boldsymbol{d}} \end{aligned}$

Bragg scattering occurs in specific directions

Bragg condition:

$$Q = 2k_i \sin \Theta$$

 $\mathbf{Q} = \boldsymbol{ au}$

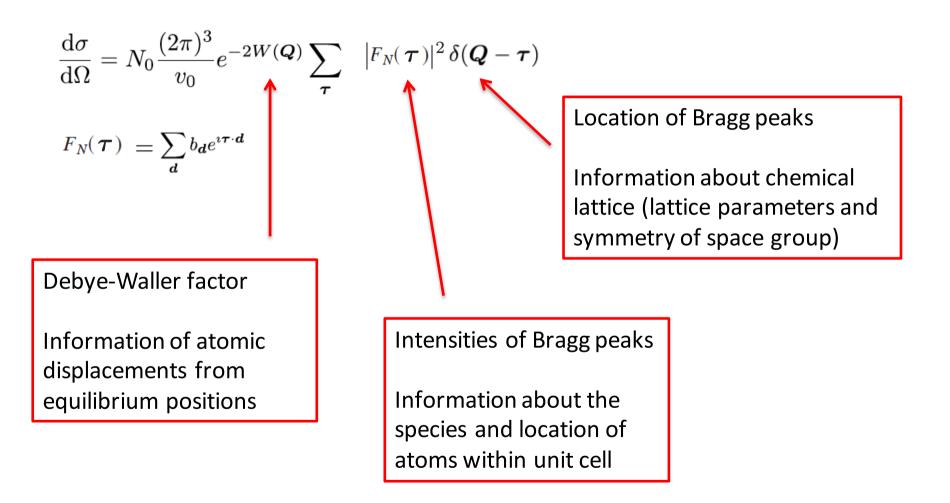
Crystal has to be aligned accurately to observed Bragg scattering

Simple diffractometer offers the possibility the sample and change toe scattering angle

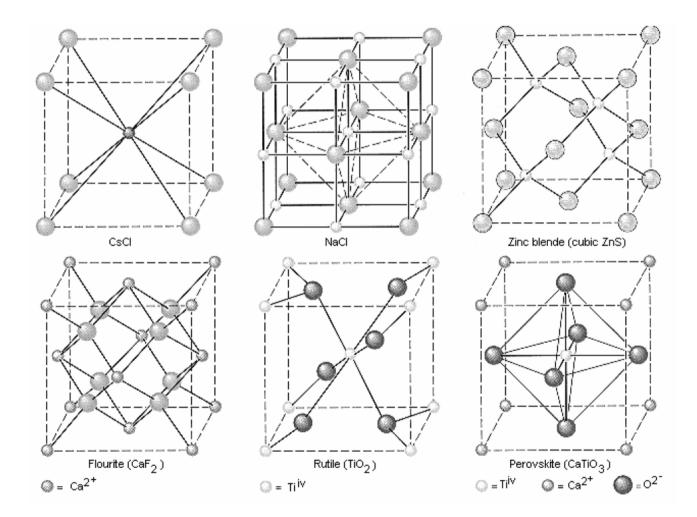
How to look for a Bragg peak?

Debye-Weller factor

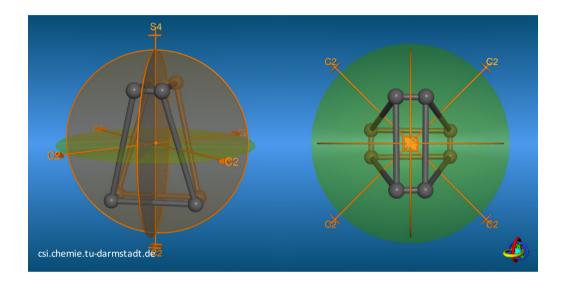
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \sum_{j,j'} b_j b_{j'} \langle e^{-\imath \mathbf{Q} \cdot \hat{\mathbf{R}}_{j'}} e^{\imath \mathbf{Q} \cdot \hat{\mathbf{R}}_j} \rangle.$$


The atoms thermally move around their equilibrium positions. As a consequence the scattered intensity falls off at higher momentum transfer **Q**, according to the so-called Debye-Waller factor

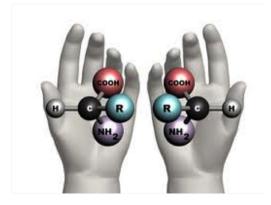
For cubic material
$$2W(Q) = 2W(Q) = \frac{1}{3}Q^2 \langle u^2 \rangle$$


$$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = N_0 rac{(2\pi)^3}{v_0} e^{-2W(oldsymbol{Q})} \sum_{oldsymbol{ au}} ~~ ig|^2 \delta(oldsymbol{Q}-oldsymbol{ au})$$

$$F_N(\boldsymbol{\tau}) = \sum_{\boldsymbol{d}} b_{\boldsymbol{d}} e^{i \boldsymbol{\tau} \cdot \boldsymbol{d}}$$

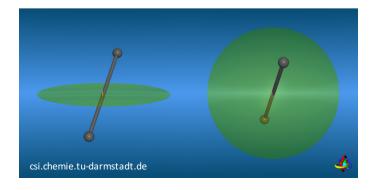

Summary nuclear Bragg scattering

Excursion: symmetry

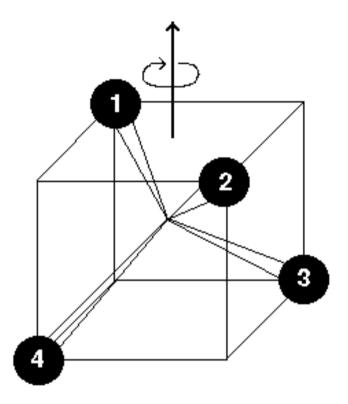

Point groups

Point groups determine local properties, such a magnetic moments, crystal fields etc

Basic symmetry operations:


- Rotations
- Mirror planes
- Inversion

Basic symmetry operations


Rotation symmetry
$$\mathcal{R} = \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Mirror symmetry
$$\mathcal{R} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Inversion symmetry

Example of combined symmetry operations


Symmetry operation S_4 : four-fold rotation followed by a mirror operation perpendicular to the four-fold axis

Example

Point group C_{4v}

- Two-fold axis
- Four-fold axis
- Four mirror planes

4mm	1	2_z	4_z	4_z^{-1}	m_{xz}	m_{yz}	m_{xx}	$m_{x\overline{x}}$
1	1	2_z	4_z	4_z^{-1}	m_{xz}	m_{yz}	m_{xx}	$m_{x\overline{x}}$
2_z	2_z	1	4_{z}^{-1}	4_z	m_{yz}	m_{xz}	$m_{x\overline{x}}$	m_{xx}
4 _z	4 _z	${4}_{z}^{-1}$	2_z	1	m_{xx}	$m_{x\overline{x}}$	m_{yz}	m_{xz}
4_{z}^{-1}	4_z^{-1}	4_z	1	2_z	$m_{x\overline{x}}$	m_{xx}	m_{xz}	m_{yz}
m _{xz}	m_{xz}	m_{yz}	$m_{x\overline{x}}$	m_{xx}	1	2_z	${\bf 4}_{z}^{-1}$	4_z
m_{yz}	m_{yz}	m_{xz}	m_{xx}	$m_{x\overline{x}}$	2_z	1	4_z	4_{z}^{-1}
m_{xx}	m_{xx}	$m_{x\overline{x}}$	m_{xz}	m_{yz}	4_z	4_z^{-1}	1	2_z
$m_{x\overline{x}}$	$m_{x\overline{x}}$	m_{xx}	m_{yz}	m_{xz}	4_z^{-1}	4_z	2_z	1

List of point groups

Crystal	Number of	Herman-Mauguin	Schoenflies
System	Point Groups	Point Group	Point Group
Triclinic	2	$1,ar{1}$	C_1, C_i
Monoclinic	3	2, m, 2/m	$\mathrm{C}_2,\mathrm{C}_s,\mathrm{C}_{2\mathrm{h}}$
Orthorhombic	3	222, mm2, mmm	D_2, C_{2v}, D_{2h}
Trigonal	5	$3, \bar{3}, 32$	C_3,S_6,D_3
		$3m, \bar{3}m$	$\mathrm{C}_{3v},\mathrm{D}_{3d}$
Hexagonal	7	$6, \bar{6}, 6/m, 622,$	$C_{6},C_{3h},C_{6h},D_{6}$
		$6\mathrm{mm},62\mathrm{m},6\mathrm{mm}$	${\rm C}_{6v},{\rm D}_{3h},{\rm D}_{6h}$
Tetragonal	7	$4, \bar{4}, 4/m, 422,$	C_4,S_4,C_{4h},D_4
		4 mm, $\overline{4}2$ m	$\mathrm{C}_{4v},\mathrm{D}_{2d},\mathrm{D}_{4h}$
		$4/\mathrm{mmm}$	
Cubic	5	23, m3, 432	T,T_h,O
		$\overline{4}32, \mathrm{m}\overline{3}\mathrm{m}$	T_d,O_h

Space groups

point groups + lattice translations = space groups

$$(\mathcal{R}, \mathbf{t})(\mathbf{r}) = \mathcal{R}\mathbf{r} + \mathbf{t}$$

$$(\mathcal{R}_1, \mathbf{t}_1) \cdot (\mathcal{R}_2, \mathbf{t}_2) = (\mathcal{R}_1 \cdot \mathcal{R}_2, \mathcal{R}_1 \mathbf{t}_1 + \mathbf{t}_2))$$

Crystal symmetry consists of

- Bravais lattices
- Choice of basis
- Translational symmetry

There are 230 space groups in three dimensions

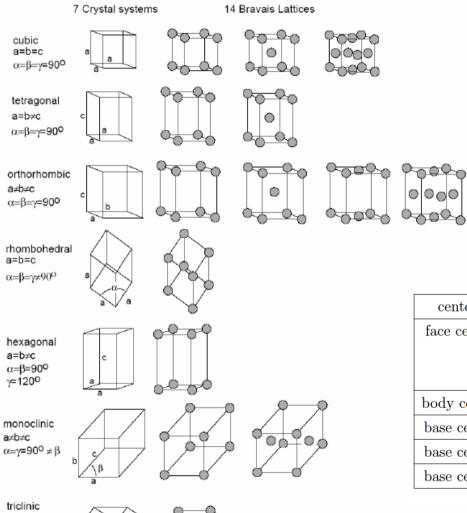
→ International Tables for Crystallography (Hahn)

Space groups: international tables

Home

http://it.iucr.org/

International Tables for Crystallography

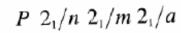

ISBN: 978-0-470-68575-4 doi: 10.1107/9780955360206000001

This is the home page for International Tables, the definitive resource and reference work for crystallography. The series consists of the following volumes:

Volume A	Space-group symmetry
	2016 Edition Contents Sample pages Indexes
	2006 Edition Contents Sample pages Indexes
Volume A1	Symmetry relations between space groups
	2011 Edition Contents Sample pages Indexes
	2006 Edition Contents Sample pages Indexes
Volume B	Reciprocal space
	2010 Edition Contents Sample pages Indexes
	2006 Edition Contents Sample pages Indexes
Volume C	Mathematical, physical and chemical tables
	2006 Edition Contents Sample pages Indexes
Volume D	Physical properties of crystals
	2013 Edition Contents Sample pages Indexes
	2006 Edition Contents Sample pages Indexes
Volume E	Subperiodic groups
	2010 Edition Contents Sample pages Indexes
	2006 Edition Contents Sample pages Indexes
Volume F	Crystallography of biological macromolecules
	2012 Edition Contents Sample pages Indexes
	2006 Edition Contents Sample pages Indexes
Volume G	Definition and exchange of crystallographic data
	2006 Edition Contents Sample pages Indexes

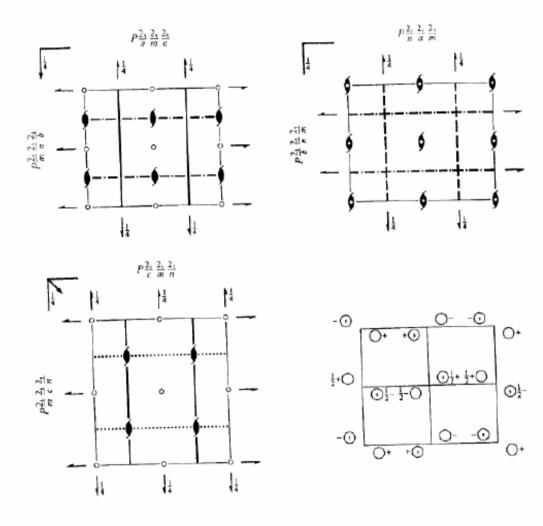
Reminder Bravais lattice

centering symbol centering vector(s)		lattice points per unit cell	
		$\frac{1}{2}(\mathbf{b} + \mathbf{c})$	4
		$rac{1}{2}(\mathbf{a}+\mathbf{c})$	
		$\frac{1}{2}(\mathbf{a} + \mathbf{b})$	
body centered	Ι	$\frac{1}{2}(\mathbf{a} + \mathbf{b} + \mathbf{c})$	2
base centered	А	$\frac{1}{2}(\mathbf{b} + \mathbf{c})$	2
base centered	В	$\frac{1}{2}(\mathbf{a}+\mathbf{c})$	2
base centered	С	$\frac{1}{2}(\mathbf{a} + \mathbf{b})$	2


a≠b≠c α≠β≠γ≠90°

Important properties of a crystal structure

- Space group elements
- Centering
- Wyckoff positions
- Site symmetry
- Allowed Bragg peak positions


Рпта No. 62

 $D^{\scriptscriptstyle 16}_{\scriptscriptstyle 2h}$

Patterson symmetry Pmmm

Orthorhombic

mmm

. .

Origin at 1 on 12,1

Asymmetric unit $0 \le x \le \frac{1}{2}; \quad 0 \le y \le \frac{1}{4}; \quad 0 \le z \le 1$

Symmetry operations

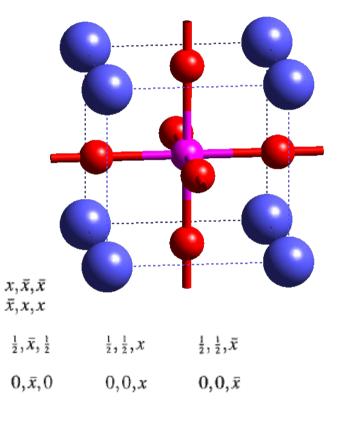
(1) 1	(2) $2(0,0,\frac{1}{2}) - \frac{1}{4},0,z$	(3) $2(0, \frac{1}{2}, 0) = 0, y, 0$	(4) $2(\frac{1}{2}, 0, 0)$ x, $\frac{1}{2}$
(1) 1			(8) $n(0, \frac{1}{2}, \frac{1}{2}) = \frac{1}{4}, y, z$
(5) 1 0.0.0	(6) $a = x, y, \frac{1}{2}$	(7) $m x, \frac{1}{4}, z$	(0) (0,2)1/ ())

No. 62

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5)

Posit Multig Wyck	plici off b	ty, etter,		Co	ordinates			Reflection conditions
Site sy	ymn	netry						General:
8 d	1	1	(1) x, y, z (5) x, ỹ, ž	(2) \vec{x} + (6) x +	$\frac{1}{2}, \bar{y}, z + \frac{1}{2}$ $\frac{1}{2}, y, \bar{z} + \frac{1}{2}$	(3) $\bar{x}_{2}y + \frac{1}{2}, \bar{z}$ (7) $x_{2}y + \frac{1}{2}, z$	(4) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{z} + \frac{1}{3}$ (8) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{3}$	0kl : k + l = 2n hk0 : h = 2n h00 : h = 2n 0k0 : k = 2n 00l : l = 2n 00l : l = 2n
								Special: as above, plus
4 6	¢	. <i>m</i> .	$x, \frac{1}{4}, z$	$x+rac{3}{2},rac{3}{4},z$	+ ± x,	$\frac{3}{4}, \overline{z}$ $x + \frac{1}{2}, \frac{1}{4}, \frac{1}{4},$	Z+1	no extra conditions
4 8	6	ī	$0, 0, \frac{1}{2}$	$\frac{1}{2},0,0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$		$hkl \ : \ h+l, k=2n$
4 6	4	ī	0,0,0	$\frac{1}{2}, 0, \frac{1}{2}$	$0, \frac{1}{2}, 0$	1 1 1 1		hkl : h+l, k=2n
Symmetry of special projection Along [001] $p 2gm$ $\mathbf{a}' = \frac{1}{2}\mathbf{a}$ $\mathbf{b}' = \mathbf{b}$ Origin at 0, 0, z		Along $\begin{bmatrix} 100 \end{bmatrix} c 2mm$ $\mathbf{a}' = \mathbf{b} \qquad \mathbf{b}' = \mathbf{c}$ Origin at $x, \frac{1}{4}, \frac{1}{4}$			$\mathbf{a}' = \mathbf{c}$	$\begin{bmatrix} 010 \end{bmatrix} p 2 g g \\ b' = a \\ a t 0, y, 0 \end{bmatrix}$		
Max	ima	al non-i	somorphic s	ubgroups				
I IIa IIb	[2 [2 [2 [2 [2]	Pnm2 P2,m2 P2,m2 P2,2 P112 P112 P2,/n	$(Pna2_1, 33)$ $(Pmn2_2, 31)$ $n(Pmc2_2, 26)$ $2_1(19)$ $a(P2_1/c, 14)$ $11(P2_1/c, 14)$ $m1(P2_1/m, 1)$	1; 2; 1; 4; 1; 2; 1; 2; 1; 2; 1; 2; 1; 4;	7; 8 6; 7 3; 4 5; 6 5; 8			

IIc [3] Pnma ($\mathbf{a}' = 3\mathbf{a}$) (62); [3] Pnma ($\mathbf{b}' = 3\mathbf{b}$) (62); [3] Pnma ($\mathbf{c}' = 3\mathbf{c}$) (62)


Minimal non-isomorphic supergroups

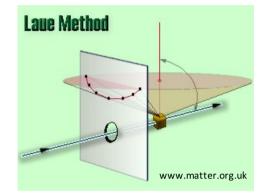
- I none
- **II** [2] Amma (Cmcm, 63); [2] Bbmm (Cmcm, 63); [2] Ccme (Cmce, 64); [2] Imma (74); [2] Pcma ($\mathbf{b}' = \frac{1}{2}\mathbf{b}$) (Pbam, 55); [2] Pbma ($\mathbf{c}' = \frac{1}{2}\mathbf{c}$) (Pbcm, 57); [2] Pnmm ($\mathbf{a}' = \frac{1}{2}\mathbf{a}$) (Pmmn, 59)

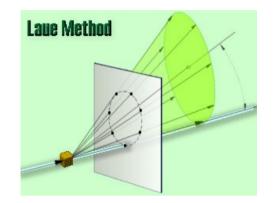
Example crystal structure

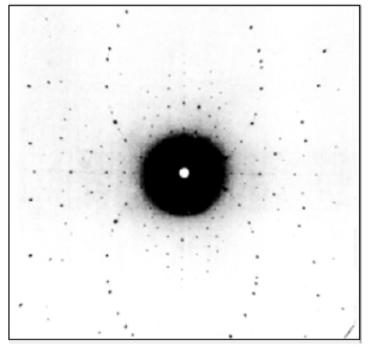
SrTiO₃ : Pm-3m (No. 221)

	Ator	n site	x	у	z		
	\mathbf{Sr}	1b	0.5	0.5	0.5		
	Ti	1a	0	0	0		
	Ο	3d	0.5	0	0		
		I					
8	g	g.3m		x, x, x x, x, \overline{x}		$ar{x},ar{x},x$ $ar{x},ar{x},ar{x}$	$ar{x}, x, ar{x}$ $x, ar{x}, x$
6	f	4 m . m	4 m . m		$\frac{1}{2}$	$ar{x}, rac{1}{2}, rac{1}{2}$	$\frac{1}{2}, x, \frac{1}{2}$
6	е	4 m . m		<i>x</i> ,0,	0	$\bar{x}, 0, 0$	0, x, 0
3	d	4/mm .	т	$\frac{1}{2}, 0,$	0	$0, \frac{1}{2}, 0$	$0, 0, \frac{1}{2}$
3	с	4/mm .	т	$0, \frac{1}{2},$	12	$\frac{1}{2},0,\frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$
1	b	m 3 m		$\frac{1}{2}, \frac{1}{2}, \frac$	12		
1	а	тĨт		0,0	,0		

Perovskite structure

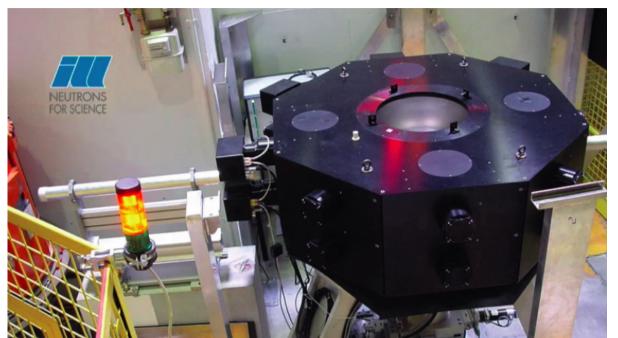

Two classes of neutron diffraction experiments


- Monochromatic beam
 - powder neutron diffraction
 - single crystal neutron diffraction
- Polychromatic beam
 - Laue diffraction
 - Time-of-flight diffraction


Laue measurements

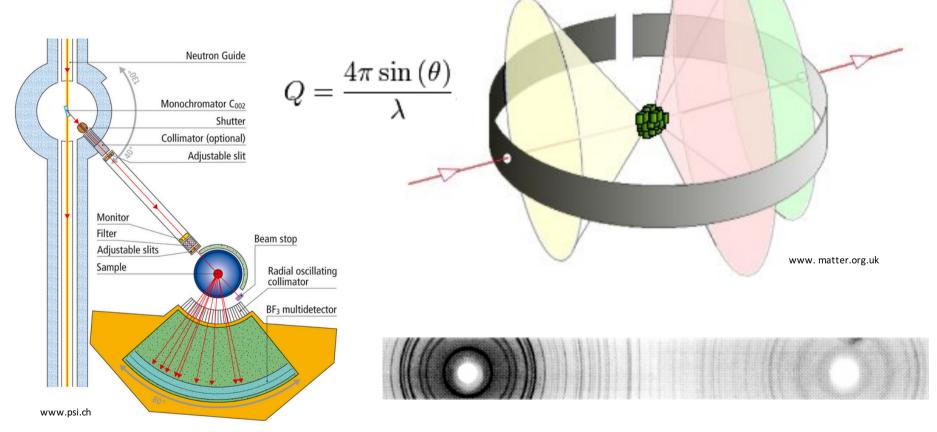
Polychromatic beam fulfills the Bragg conditions for many reciprocal lattice vectors

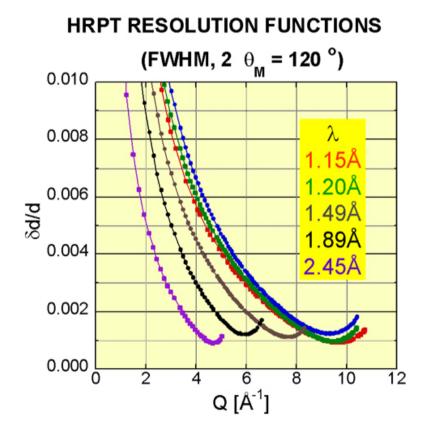
$$Q = 2k_i \sin 2\Theta$$


Systematic absences and symmetry of reciprocal lattice become immediately visible

Experiments are usually carried out with image plates and thus the intensity cannot be be analyzed quantitatively

Example: neutron Laue instrument


Modern neutron Laue instrument



Neutron powder diffraction

- Many materials are not available as crystals
- Polycrystalline have no orientation
- Bragg peaks are easy to find
- Data is often easier to analyze

Resolution powder neutron diffraction

Phase problem

Neutron diffraction measures intensities, but not the structure factors

$$I \propto |F_N(\tau)|^2 \qquad F_N(\tau) = \sum_d b_d e^{i\tau \cdot d}$$

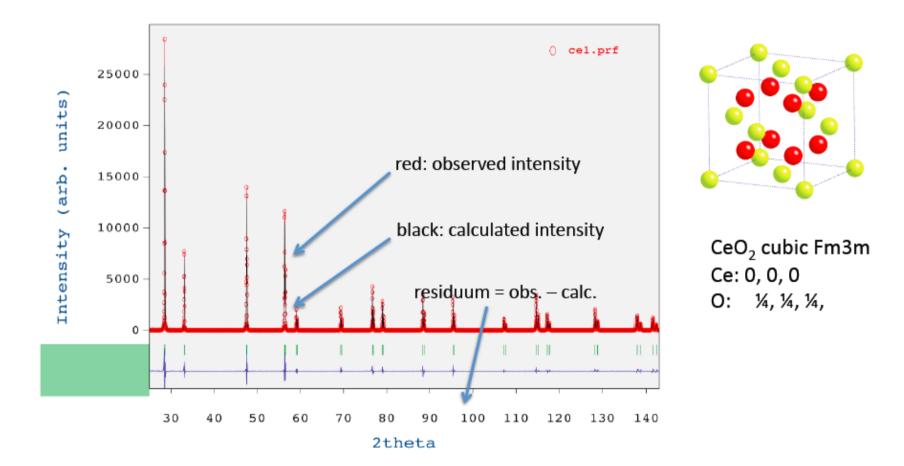
Structure factors are measured without the phase

Structure cannot be simply obtained from a Fourier Transform of structure factors, because the phases are not measured

 \rightarrow Fitting of models to the observed data is necessary

Powder diffraction analysis

$$I_i = a + 2b\theta_i + m_{\rm hkl} |F_N(\boldsymbol{\tau})|^2 L(\theta_i) \exp\left(-4\ln 2\left(\frac{2\theta_i - 2\theta_{\rm hkl}}{\Gamma_i}\right)^2\right)$$

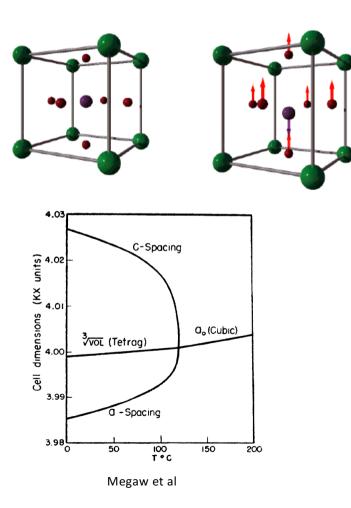

$$L(\theta) = 1/(\sin \theta \sin 2\theta)$$
 Lorentz factor arising from the Debye-Scherrer cones intersecting powder sample

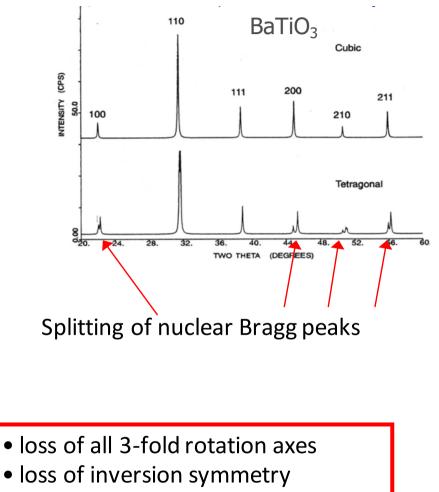
 $\Gamma(2\theta) = \sqrt{U\tan^2\theta + V\tan\theta + W}$

Bragg peaks are broadened by resolution (finite wave-length distribution etc)

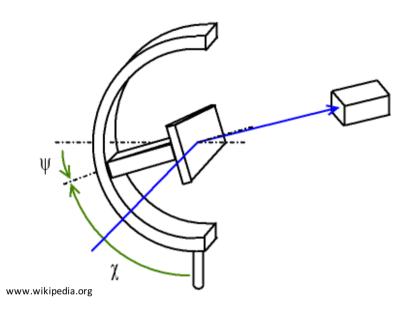
Additional information may be extracted about strain, preferred orientation etc through a peak shape analysis

Example CeO₂

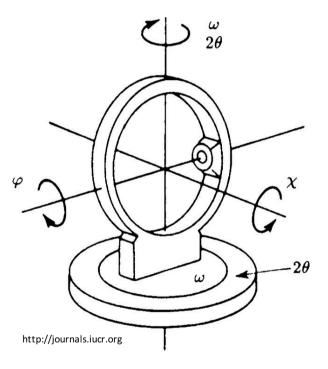

Minimize
$$\chi^2 = \sum_i w_i \left(I_i^{\text{obs}} - I_i^{\text{cal}} \right)^2$$


Fullprof Rietfeld fitting program

Temperature dependence of crystal structures


Onset of ferroelectricity is associated with chemical phase transition, change of lattice

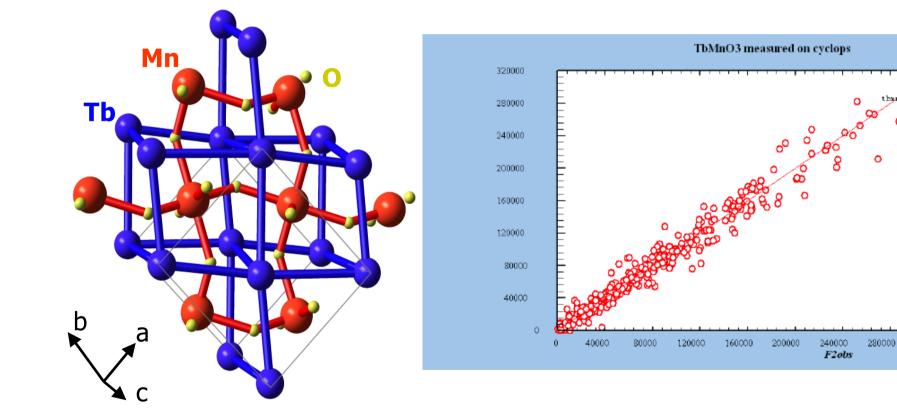
loss of some 4-fold rotation axes


Single crystal diffraction

- Monochromatic beam
- Horizontal scattering plane

Lifting arm detectors allow limited access to 3D reciprocal space only with omega and 2Theta angles

four angles are needed to access all directions in reciprocal space for horizontal scattering plane

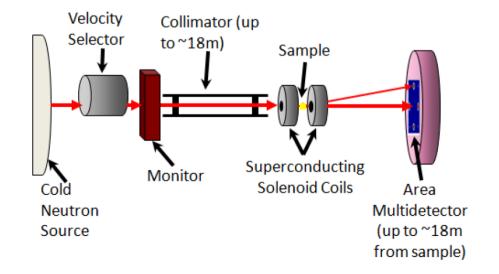


Example TbMnO₃

than phone anis . PRF

320000

F2calc

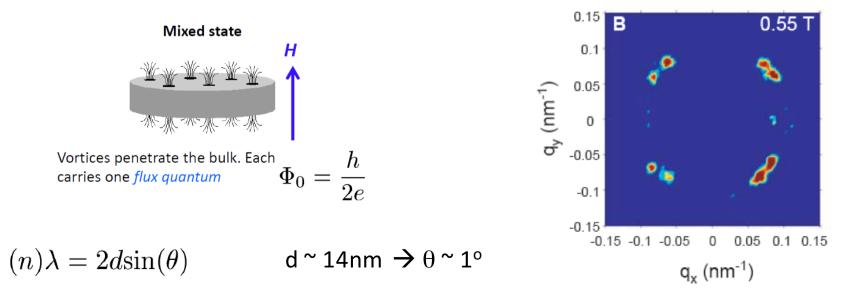


Small-angle diffraction

• For a unit cell of 1 nm and neutron wave-length of 5 Angstrom, lowest angle peaks are at $2\Theta = 29^{\circ}$

 $(n)\lambda = 2d\mathrm{sin}(\theta)$

- If a unit cell is large, then 2 Theta becomes small for d=20nm \rightarrow 2 Θ ~ 1°
- Such low-angle scattering experiment are performed on small-angle neutron scattering (SANS) instruments



SANS instrument

SANS-I beamline at Paul Scherrer Institute, Villigen (Switzerland).

Measurement of structure of a flux lattice in a superconductor

