

12th International Workshop on Spallation Materials Technology

19-23 October 2014, Bregenz, Austria

Radiation Damage and Synergistic Effect in CLAM steel

Daqing Yuan

China Institute of Atomic Energy Beijing China

China Institute of Atomic Energy					
Daqing Yuan	Yongnan Zheng	Yi Zuo			
Ping Fan	Dongmei Zhou	Qiaoli Zhang			
Xiaoqiang Ma	Baoqun Cui	Lihua Chen			
Weisheng Jiang	Shengyun Zhu				

Institute of Nuclear Energy Safety Technology, CAS					
Qunying Huang	Yican Wu	Lei Peng			

Institute of High Energy Physics, CAS					
Xingzhong Cao	Baoyi Wang	Long Wei			

✓ Background

Dependences of Radiation Damage in CLAM on Irradiation Temperature and Dose Synergistic Effect of RD in CLAM Studied by Triple beam irradiation

Background

•Nuclear energy materials withstand constant bombardment of neutrons work in high dose and temperature environment

Structure materials for advanced nuclear energy system are required to be able to work in such extreme environments of high dose irradiation for more than one hundred dpa without failure.

Irradiation resistance of structure materials is one of key properties.

	Fission (Gen I)	Fission (Gen IV)	Fusion (DEMO/PROTO)	Spallation (ADS)
Structural alloy $\mathrm{T}_{\mathrm{max}}$	<300 °C	300–1000 °C	550–1000 °C	140–600 °C
Max dose for core internal structures	~1 dpa	~30–200 dpa	150 dpa	50–100 dpa
	_			

It needs very long time, say years, to perform irradiations in laboratories up to several tens or hundreds of dpa by using currently available reactors or accelerators neutron sources.

Accelerator simulation of heavy ion irradiation developed study of radiation damage produced by high dose neutron irradiations

Dose Rate	Heavy Ions (Accelerator)	Fast Reactor	Reactor	Fusion
dpa/s	10-3	10-6	10-7	10-6

HI-13 Tandem Accelerator			¹ ¹ ¹ ¹ ¹⁸ −		
Energy	Range	Charge state	dpa/µAh	ss Sc	⁴ He (5MeV)
70 <u>MeV</u>	41µm	5+	0.83	່ <u>ຍ</u> 10 ⁻¹⁹ - ບ	¹ H(3.2MeV)
80 <u>MeV</u>	21µm	5+	2.44	^a ^b ₀ 10 ⁻²⁰	
l 70 <u>MeV</u>	7.7µm	7+	6.1		¹ n (14 MeV)
Fe 110 <u>MeV</u>	7.9 μm	9 +	7.8	ے ₁₀ -21	¹ n (1MeV)
7 100 MeV	6.6µm	10+	14.1	10 ⁻²	10 ⁻¹ 10 ⁰ 10
stainless steel	steel HIs up to Au			Depth (µm)	

316L SS

⁸⁴Kr(160MeV)

⁴⁰Ar(160MeV)

²⁰Ne (160MeV)

10⁻¹⁵

10⁻¹⁶

10⁻¹⁷

ction (dpa/ion/cm²)

- The displacement rate of heavy ions is a magnitude of >10³ higher than that of neutrons
- Hence, significantly reduces the irradiation time

Triple ion beam irradiation

	FAST REACTOR	ADS	FUSION
working temperature (°C)	400~1000	250~600	550~1000
dose rate (dpa/year)	~40	~100	~30
He (appm/year)	40	~5000	~450
H (appm/year)	240	~30000	~1500

Fast neutron irradiation:

Nuclear energy materials suffer continuous neutron irradiation inducing severer displacement damage plus gas production of hydrogen and helium produced by (n,α) and (n,p) transmutation reactions

In simultaneous irradiations of triple ion beams there is the so called synergistic effect that may enhance or suppress radiation damage

E. Wakai, JNM, Vol 307-311(2002) 278 JNM ,Vol 356(2006) 95

T. Tanaka JNM Vol 329-333 (2004) 294

Important to investigate the combined radiation effect of the displacement damage coupled with gas production of hydrogen and helium

The CLAM (China Low Activation Martensitic) Steel has been developed in China for use as structural materials in ITER, fast reactors, ADS, etc

Present work motivated to examine its radiation properties through measuring the dependences of radiation damage on irradiation temperature up to 700°C and irradiation dose up to 100 dpa by heavy ion irradiations and

studying the synergistic effect of radiation damage by simultaneous irradiations of heavy ions and hydrogen and helium

Dependences of radiation damage in CLAM on irradiation temperature and dose

Chemical composition of CLAM Steel in wt%

Element	С	Cr	\mathbf{W}	\mathbf{V}	Ta	Mn	Y	Fe
Content	0.1	9.0	1.5	0.20	0.15	0.45	0.2	Bal.

1, For low activation

W, Ta and V adopted to replace Mo, Nb, and Ni in RAFM 2, For improving its physical, mechanical, radiation-resistant properties

Cr, Y and Mn added

Size of the samples used in the experiment $\phi 15mm \times 0.5mm$

Mechanically polished to mirror like surface

performed using the variable temperature irradiation chamber set at the HI-13 Tandem Accelerator irradiation terminal in CIAE

variable temperature irradiation chamber RT to 800°C (±10°C) 6 samples mounted & irradiated in turn without breaking vacuum Radiation induced defects in structural materials particularly in the early stage are mainly atomic-scale vacancy type defects PAS is a powerful & indispensable tool for the study of vacancy type defects in an atomic scale

PAS was employed in the present work for examining the RD induced by irradiations

CHINA INSTITUTE OF ATOMIC ENERG

Positron Lifetime Measurement

NNE CHINA INSTITUTE OF ATOMIC ENERGY

Dependence of RD on irradiation dose

vacancy clusters.

irradiated by 80 MeV ¹⁹F ions to 100 dpa at RT

Irradiation dose/dpa

Dependence of RD on irradiation temperature

irradiated by 80 MeV ¹⁹F ions from RT to 700°C at 15 dpa

a peak at ~500°C where the maximum vacancy cluster contains 9 vacancies with an average diameter of 0.59 nm.

The experimental results indicate that this CLAM steel has good radiation resistant properties

Synergistic effect of RD in CLAM steel studied by triple beam irradiation

Temperature RT-1200°C (±10°C) 6 samples irradiated in turn

H and He mixed beam

Triple beam irradiation parameters

	Energy/ <u>keV</u>	Irradiation fluence /cm ⁻² A	Irradiation fluence /cm ⁻² B	Irradiation fluence /cm ⁻² C
Hydrogen	100	0	2.42x10 ¹⁶	4.84x10 ¹⁶
Helium	200	0	7.89x10 ¹⁵	1.66x10 ¹⁶
Gold	70000	0	5.37x10 ¹³	1.07x10 ¹⁴

Three different fluence of triple beam for irradiation:

A: un-irradiation sample

The fluence of triple beam of C is about twice higher than one of B

For fluence B: sequentially and simultaneously irradiation were performed

Depth distributions of Au and H and He for irradiation fluence B calculated by SRIM code

Synergistic effect of HI,H & He

Severer effect of H & He

A and B: **Depth distributions of** displacement for H, He and Au ions in whole range and range from the surface to 600 nm **C: Depth distributions** of total and respective displacements **D:** Distributions of total displacement and H and He concentrations

Distribution of displacements and H and He concentrations for irradiation fluence C

Since the implanted ion range is less than 1 μ m. Variable mono-energetic slow positron beams used to detect RD by depth profiling measurements of Doppler broadening

Slow positron beam facility based on 1.3 GeV Linac of BEPC at IHEP Provideing mono-energy positrons up to 30 keV ($\pm 10 \text{ eV}$) with intensity of $6 \times 10^5 \text{e}^+\text{s}^{-1}$

The range of 20keV positron is ~600nm in CLAM, so the slow positron beam facility is enough to detect the depth profile of radiation damage.

Depth profiles of *S* parameter for the un-irradiated sample (A) for the samples triple beam simultaneously irradiated to fluences B and C

triple beam irradiations create vacancy type defects cause an increase of S para. compared to un-irradiation sample.

S para. of the sample irradiated to the high fluence C are lower than those of the sample irradiated to the low fluence B in the depth up to 300 nm

Explained by the synergistic Effect of displacement, H and He

Depth profiles of *S* parameters for the un-irradiated sample, and the samples sequentially and simultaneously irradiated to fluence B

S parameters for the simultaneous irradiation are lower than those for the sequential irradiation duo to the synergistic effect of H and He that reduces the *S* parameters

Synergistic effect of Heavy ion and H and He suppress the *S* parameter in the present experiment

S parameters for simultaneous irradiation to higher fluence C are lower than those to low fluence B

S parameters for simultaneous irradiation are lower than those for the sequential irradiation

Depth region between 300nm and 600 nm

ENNE CHINA INSTITUTE OF ATOMIC ENERGY

Concentration peaks of H and He located in the depth region II between 300 & 600 nm

Strong He & H effects greatly reduce the *S* parameters for both simultaneous and sequential irradiations to the irradiation fluences B and C to those of the unirradiated sample

• Implanted He and H atoms are mobile at first and then subsequently trapped by vacancies located in the centers of the vacancy clusters or voids As a result, positrons are trapped in a smaller space or at the inner surface of the voids

The He and H filling

lowers the available positron trap volume and leads to a significant reduction of the *S* parameter

• In the peak region of the H and He concentration distribution the He and H effect is so strong that the S parameters are greatly reduced

Experimental results exhibit clearly the synergistic effect of displacement damage and H and He on the formation of radiation damage in CLAM steel

Thank you