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Background 

• The study of irradiation effects on the reduced activation 
ferritic/martensitic steels is important for the structural 
materials of fusion reactor and spallation neutron source 
including accelerator driven system.  
 

• One of features of spallation neutron source is high 
production rate of gas atoms, which leads to the formation of 
a large amount of He bubbles. He bubbles have great 
influence on mechanical properties of structural materials. 
 

• Clarifying the growth mechanism of He bubbles is important 
for the development of nuclear materials.   
 



• Positron annihilation 
spectroscopy is very powerful 
tool to detect “small” vacancy 
type defects. 
 

• The defect structures in F82H 
and T91 irradiated with 
protons and neutrons were 
investigated using positron 
annihilation spectroscopy 

• The growth process of helium 
bubbles were considered. 
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Formation of visible He bubbles in F82H:  
above about 170℃ and about 500 appm He 
       [Jia et al., J. Nucl. Mater. 305 (2002) 1.] 

Visible He bubbles Invisible He bubbles 

Purpose of this study 



• Sample: F82H, T91 
• Irradiation condition (STIP-II) 
   
 
 
 

 
 
 
 
 
 
 
 
 
 
 

• Positron annihilation lifetime (PAL) measurements 
      Positron annihilation coincidence Doppler broadening (CDB) measurements 

Sample Sample ID Average temperature 
[K] 

Irradiation dose 
[dpa] 

He production  
[appm] 

H production 
[appm] 

F82H K69L/K72L 360 6.1 460 1690 
K69H/K72L 387 9.4 735 2905 
K70L/K73L 400 10.7 850 3435 
K70H/K73H 448 15.2 1305 5365 
K71L/K73L 465 16.9 1475 6100 
K71H/K74H 502 20.3 1790 7700 

T91 F37L/F40L 376 6.1 460 1690 
F37H/F40L 414 9.4 735 2905 
F38L/F41L 431 10.7 850 3435 
F38H/F41H 498 15.2 1305 5365 
F39L/F42L 521 16.9 1475 6100 
F39H/F42H 572 20.3 1790 7700 

Sample Sample ID 
Average temperature 

[K] 

Irradiation dose 

[dpa] 

He production 

[appm] 

H production 

[appm] 

F82H L11, L12 385 7.2 531.5 2105 

Isochronal annealing test sample 

Experimetal 



Dose dependence 
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Results of PAL measurements 

• The long and mean lifetimes decrease with increasing the irradiation dose below 12 dpa. 
• Spectra are not decomposed into two components above 12 dpa.  
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CDB ratio curves 

We cannot see the conspicuous peak caused by the He atoms in all range.  
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Definition of S- and W-parameter 
S-parameter: Ratio of the low-momentum (|PL|<2.5×10−3 mc) area to the total area 
                         The amount of vacancy type defects 
W-parameter: Ratio of high-momentum (7×10−3 mc < |PL| < 12×10−3 mc) areas  
                           to the total area 
                           The amount of precipitates or bubbles 

S W 

This region was decided from the previous study 
  [Sabelova et al., J. Nucl. Mater. 450 (2014) 54.]. 

They reported that He atoms 
affect CDB ratio curves in the 
momentum of 5–12x10-3 mc by 
simulation.  
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S-W plots of F82H 

• Electron irradiation introduces 
only defects. Therefore, solid line 
denotes the change in S- and W-
parameter only by the defect 
formation. 

• Vacancy clusters contain He atoms 
in STIP samples.  

Difference of gradient of two lines is 
due to the He effect.  

Positron trapping rate into He bubbles 
is smaller than that into empty voids. 
So , the change in S- and W-parameter 
should be different between electron 
irradiation and STIP. 

Solid line denotes the change in electron 
irradiation. 
Broken line denotes the change in STIP. 



[Troev et al., Phys. Status Solidi C 6 (2009) 2373] 

12V 

6V 

2V 
1V 

PAL of vacancy clusters-He complexes in Fe 
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Decrease of positron lifetime is 
due to absorption of He atoms. 

Many different sizes of 
He bubbles are formed.  

and 

Change in PAL by He effect 
From S-W plot, change in PAL is due to He absorption process. 



Isochronal annealing 
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Change in PAL 

• The long and mean lifetimes decrease 
as the annealing temperature is 
increased up to 673 K. 
 

• Lifetime spectra are not decomposed 
into two components after annealing at 
673 K.  
 

• Spectrum is decomposed into two 
components in 973 K annealing again.  
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Change in PAL and S-parameter 

Variation in S-parameter is almost the same as that in mean positron lifetime.  
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S-W plots of F82H 

Solid line denotes the change in electron 
irradiation. 
 
Broken line denotes the change between 
post-irradiation and samples annealed 
up to 673 K.  
 
These data points (from post-irrad. to 
673K annealing) are clearly on broken 
line. 
 
Data points for 873K and 973 K annealing 
start to shift, and a data point for 1073K 
shift obviously.  

Change from post-irrad. to 673K is 
due to the He effect.  
After that, different process started. 
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S-W plots of F82H 

Below 673 K: Size of He filled vacancy clusters does not change, and they absorb He 
atoms weakly trapped in the matrix.  

Above 873 K: He filled vacancy clusters absorb vacancies and release H atoms. The size 
of He filled vacancy clusters increases.  
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He filled vacancy clusters dissociate above 773 K. 
[R. Sugano et al., J.Nucl. Mater. 329–333 (2004) 942] 

This process is well known, however, we can detect it using positron annihilation 
spectroscopy. 
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Detection of He peak in CDB ratio curve 

The peak in the range of 5−12 x 10−3 mc can be detected.  
This result agrees with previous study  [Sabelova et al., J. Nucl. Mater. 450 
(2014) 54.].  

CDB ratio curve of F82H irradiated in STIP-II and annealed at 673 K to F82H irradiated 
with electrons for 70 h 



• PAL and CDB measurements of F82H and T91 irradiated with protons and 
neutrons at SINQ were performed.  
 

• The change in PAL can be explained by the He effect.   
       Dose dependence 
         - In low dose region, vacancy clusters absorb He atoms, and PAL 

decreased. 
         - In high dose region, the vacancy clusters containing a large amount of 

He atoms are formed. 
        Isochronal annealing 
         - Below 673 K, He filled vacancy clusters absorbed more He atoms.  
         - Above 873 K, He filled vacancy cluster size increased.  

 
• The effect of He atoms on the CDB ratio curves was also detected. 

 
• We could obtain a better understanding of He bubble growth by 

performing both PAL and CDB measurements. 

Summary 



 



10 -4 10 -3 10 -2 10 -1 0 

100 

200 

300 

400 

500 

Neutron dose, /dpa 

Li
fe

tim
e,

  τ
 /p

s 

KUR 
  τ av 
  τ 1 
  τ 2 
  τ 3 

JMTR 
  τ av 
  τ 1 
  τ 2 
  τ 3 

 Matrix 

0 
20 
40 
60 
80 

100 

In
te

ns
ity

, I
/%

 

(a) Pure Ni 
KUR 

 I 2 
 I 3 

JMTR 
 I 2 
 I 3 

In more than 0.01dpa, positron lifetime is saturated, but void growth is observed by TEM. 

PAL in fission neutron-irradiated Ni 



[Tong et al., J. Nucl. Mater. 398 (2010) 43] 

9.5dpa 13.6dpa 

17.3dpa 20.3dpa 

Helium bubbles grow.  

TEM images of T91 irradiated in STIP-III  



Positron annihilation lifetime measurement 
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・Positron lifetime is proportional to the size of vacancy clusters.  
 
・In metallic system, positron lifetime is less than 500ps.  
  500ps is saturation value of positron lifetime. 
  Even if voids grow and are observed by TEM, positron lifetime of voids is  
  less than 500ps.  

[H. Ohkubo et al., Mater. Sci. Eng. A350 (2003) 95.] 

Calculated positron annihilation lifetime  



CDB measurement 
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CDB spectrum 
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The amount of data is too small to estimate He effect. 

CDB ratio curves 

Usually, when low momentum region increases, high momentum region decreases.  
But high momentum region of JPCA irradiated at PSI was higher than other samples. 
             This is due to helium effect??  



CDB spectra 
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ＳパラメータとWパラメータ（CDB測定） 
S ：                0 < | PL | < 4x10-3 mc,  
W：20x10-3 mc < | PL | < 30x10-3 mc  
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Dose dependence of positron lifetime in F82H  
Formation of visible He bubbles in F82H:  
above about 170℃ and about 500 appm He 
[X. Jia et al., J. Nucl. Mater. 305 (2002) 1.] 

Visible He bubbles Invisible He bubbles 
Decrease of positron lifetime is 
due to absorption of He atoms. 

and 

Small and medium-size vacancy 
clusters including large amount of 
He atoms 

Decrease of the amount of vacancy clusters 
including small amount of He atoms  

Growth of small He bubbles 
associated with short-range 
vacancy migration. 

Many different sizes of 
He bubbles are formed.  

and 

Visible He bubble density: 
     5x1023/m3 = 6x10-6 

Information of visible He bubbles 
are included in these lifetimes 



Annealing behavior of F82H 
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Decrease of positron lifetime is 
due to absorption of He atoms 
weakly trapped in the matrix. 

He bubble size increase because of 
dissociation of V-Hen complexes. 

500℃: V-Hen complexes dissociate 
700℃: Vm-Hen complexes dissociate 
1100℃: Large He bubbles dissociate 



TDS measurements of Fe-Cr alloys 

[R. Sugano et al., J.Nucl. Mater. 329–333 (2004) 942] 

500℃: V-Hen complexes dissociate 
700℃: Vm-Hen complexes dissociate 
1100℃: Large He bubbles dissociate 



Annealing behavior of JPCA 
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500℃: V-Hen complexes dissociate 
700℃: Vm-Hen complexes dissociate 
1100℃: Large He bubbles dissociate 

V4 

Formation of Vm-Hen complexes 
 
It is expected that they absorb 
He atoms by annealing, but the 
lifetime does not change.  
 
After irradiation, Vm-Hen 
complexes may include large 
amount of He atoms.  

Formation of stacking fault 
tetrahedra (SFTs), 
dislocation loops, V-Hen 
complexes.  

Collapse of SFTs and V-Hen 
complexes  
 
Growth of He bubbles  

Collapse of Vm-Hen complexes  
 
Growth of He bubbles 
Density of He atoms in He 
bubbles decreases. 
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Positron annihilation lifetimes in fission neutron-irradiated Ni 

Void growth is observed by TEM in more than 0.01dpa,  
but positron lifetime is saturated. 



Conventional measurement system 
(two-detector system) 

Improved measurement system  
using a digital oscilloscope 
(three-detector system) 

Positron annihilation lifetime measurement system 

Merit: Reduction of background   
Demerit: Decrease of count rate 

PMT PMT 

Fast Coinci. 
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CFD CFD 
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delay delay 

gate 



Positron annihilation lifetime spectrum 

100 200 300 400 500 600

102

103

104

105

Ch (1ch = 10ps)

C
ou

nt
s

Unirradaiated 316LN 

This spectrum is composed of these two curves. 



22Na 

(sodium chloride  
solution) 

withdraw fluid by syringe 

Kapton film (25um thick) 

place a few drops to kapton film  Strong incandescent lamp 

dry for about 10 minutes 

spread epoxy bond 

sandwich in source between kapton films 
wait the all night till bond dries 



Kapton film (sometimes Mylar film) 

Sample 

Na-22 

A part of positrons annihilate in the Kapton film.  

Set of samples 

Ratio of positrons, which annihilate at Kapton film, depends on the thickness. 

5um: ~13%, 10um: ~20%, 25um: ~33% 
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Time difference 

Time difference: 100ps 
Time difference: 400ps 

How to make lifetime spectrum 

Well-annealed Ni 

Total count of more than 1M is needed for good statistics.  
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T’: Lifetime spectrum (left figure) 
T: Decay function 
G: Time-resolution function 
B: Background 

G is given by a sum of two or three Gaussians  One component 

Two components 

Three components 

τ: lifetime 
 I : lifetime intensity 

Analysis of lifetime spectrum 

We usually use PALSfit program,  
which is developed by one group of Riso DTU.  



Without any defects With single vacancies 
  (sample contains only single vacancies) 
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mλ : positron annihilation rate in the matrix 

dλ : positron annihilation rate at the defect site 

κ : positron transition rate from the matrix to the defect site 
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