Linear spin wave theory

Sándor Tóth

Paul Scherrer Institut

August 17, 2015

Sándor Tóth (Paul Scherrer Institut)

Linear spin wave theory

э. August 17, 2015 1 / 48

A (10) < A (10) </p>

Presentation Outline

Motivation

- Magnetism in solid state physics
- 3 Inelastic neutron scattering
- 4 Classical spin wave theory
- 5 Semiclassical spin wave theory of single-Q structures
- 6 General spin Hamiltonian: SpinW
- 🕖 Practical

3 Summary

Why to calculate spin waves?

500 40 HTT Temperature (K) 2000 100 T (K) 30 20 LTO 10 300-0.0 0.1 0.2 T_N 0.3 × Т 100 pseudoga AF 0.00 0.15 0.20 0.25 0.10 0.30 doping x

50

x=1/8

La₂CuO₄ crystal structure.

R. Gilardi, PhD thesis, ETH Zurich (2004).

Phase diagram with superconducting phase.

Square lattice antiferromagnet

- Heisenberg spin Hamiltonian: $\mathcal{H} = \sum J_{ij} S_i S_j$
- Antiferromagnetic ground state is not the eigenstate of the Hamiltonian (P. W. Anderson, 1951)
- Resonating Valence Bond states?
- 2 decades of experimental and theoretical work on La₂CuO₄
- Neutron scattering as the main experimental technique
- Understanding the underlying electronic interactions

Square lattice antiferromagnet

Presentation Outline

Motivation

- 2 Magnetism in solid state physics
 - 3 Inelastic neutron scattering
- 4 Classical spin wave theory
- 5 Semiclassical spin wave theory of single-Q structures
- 6 General spin Hamiltonian: SpinW
- 🕖 Practical

3 Summary

3

Origin of magnetism

Magnetic moments in solids:

- electron spin, $M_e = g \mu_B S$, g = 2, S = 1/2
- electron orbital angular momentum, $M_L = q \mu_B L$, g = 1
- nuclear magnetic moment, $M_n << M_e$

Energy scale:

- $g\mu_B \approx 0.12 meV/T$
- 1 meV = 11.6 K = 8.3 T

Atomic magnetism:

- transition metals: Fe(3d), Pd(4d), Pt(5d)
- rare-earth metals (4f) and actinides (5f)
- competition between Hund's coupling, spin orbit coupling and crystal field

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Magnetic interactions in solids

Dipole-dipole interaction

•
$$E_{DD} \sim \left\{ 3(\mathbf{S}_1 \cdot \hat{\mathbf{r}})(\mathbf{S}_2 \cdot \hat{\mathbf{r}}) - \mathbf{S}_1 \cdot \mathbf{S}_2 \right\}$$

• for electron spins: $E_{DD} pprox 0.3 rac{meV}{r_a^3}
ightarrow 1~{
m K}$

Interatomic exchange:

• no hopping: Coulomb repulsion favors parallel spin alignment (FM)

• hopping: favors AFM alignment (lower kinetic energy)

Heisenberg interaction:

• two electron wave function: antisymmetric:

•
$$S = 0$$
 $\Psi_1 = \Psi_S(r, r')\chi_A(\sigma, \sigma')$
• $S = 1$ $\Psi_2 = \Psi_A(r, r')\chi_S(\sigma, \sigma')$

•
$$S_{TOT}^2 = S^2 + S'^2 + 2\mathbf{S} \cdot \mathbf{S}'$$

• if $E_1 - E_2 = 2J \rightarrow E = J\mathbf{S} \cdot \mathbf{S}'$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Magnetic interactions in solids

Kanamori-Goodenough rules:

- phenomenological description of superexchange interaction
- interaction between overlapping orbitals: strong AF
- interaction between non-overlapping orbitals: weak FM
- Spin-orbit coupling (SOC):
 - in 3*d* transition metals weak, gives weak anisotropy and Dzyaloshinskii-Moriya interaction
 - crystal field quenches orbital angular momentum
 - in rare earth elements, SOC is stronger than crystal field, orbital momentum unquenched
 - strong anisotropy

Presentation Outline

Motivation

2 Magnetism in solid state physics

Inelastic neutron scattering

- 4 Classical spin wave theory
- 5 Semiclassical spin wave theory of single-Q structures
- 6 General spin Hamiltonian: SpinW
- Practical

3 Summary

3

Neutron as an ideal probe

Basic properties

- charge: 0
- spin: $S_N = 1/2$
- magnetic moment: $M_N = -1.913 \, \mu_N$
- \bullet mass: $1.675\cdot 10^{-27}~\text{kg}$

Energy scale:

•
$$E = \frac{h^2}{2m\lambda^2}$$

• $\lambda = 1 \text{ Å} \rightarrow E = 81.8 \text{ meV}$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Scattering cross section

Definition: $\frac{d^2\sigma}{d\Omega dE} = \frac{\text{sc. n. in the } d\Omega \text{ solid angle in the } (\theta\varphi) \text{ direction with energy}(E';E'+dE')}{\Phi d\Omega E'}$ Nuclear scattering:

- cross section: $\frac{d\sigma}{d\Omega} = b^2$
- *b* is usually real, and non monotonic of the atomic number unlike X-ray
- typically diffraction and inelastic scattering of phonons

Magnetic scattering:

- general cross section: $\frac{d^{2}\sigma}{d\Omega dE} = C \cdot F^{2}(\mathbf{K}) \sum_{\alpha\beta} \left(\delta_{\alpha\beta} - \hat{k}_{\alpha} \hat{k}_{\beta} \right) S^{\alpha\beta}(\omega, \mathbf{k})$
- dynamic spin correlation function: $S^{\alpha\beta}(\omega, \mathbf{k}) = \frac{1}{2\pi\hbar} \int dt e^{-i\omega t} \frac{1}{N} \sum_{i,j} e^{i\mathbf{k}\cdot(r_i - r_j)} \langle S_i^{\alpha}(0) S_j^{\beta}(t) \rangle$

Useful rules

Total scattering

•
$$\int S^{lpha lpha}(\mathbf{Q},\omega) d^3 \mathbf{Q} d\omega = S(S+1)$$

Energy integrated scattering intensity:

- equal time correlation function $\langle S^{lpha}(0)S^{eta}(0)
 angle$
- snapshot of the fluctuating magnetic moments

Elastic scattering:

- measures static correlations
- $\langle S^lpha(0)S^eta(t
 ightarrow\infty)
 angle$ limit
- magnetic Bragg scattering

Inelastic scattering with fixed E energy transfer:

- measures time evolution at frequency $\omega = E/\hbar$
- measured dE energy width of resonant excitations gives the quasiparticle lifetime t = h/dE

Presentation Outline

Motivation

- 2 Magnetism in solid state physics
- Inelastic neutron scattering

4 Classical spin wave theory

- 5 Semiclassical spin wave theory of single-Q structures
- 6 General spin Hamiltonian: SpinW
- 🕖 Practical

8 Summary

Spin waves: definition

Definition:

Spin waves are propagating disturbances of an ordered magnetic lattice.

Classically:

- spin is a vector with fixed length
- equation of motion (Larmor precession):

$$rac{d\mathbf{S}}{dt} = \mathbf{S} imes \mathbf{h}$$

- **h** field can be exchange (Weiss) field, external field or anisotropy
- general solution:

$$dS_i^{x} = A_i^{x} \cos(\omega t + \mathbf{k} \cdot \mathbf{r}_i + \varphi_i^{x}) dS_i^{y} = A_i^{y} \sin(\omega t + \mathbf{k} \cdot \mathbf{r}_i + \varphi_i^{y})$$

Sándor Tóth (Paul Scherrer Institut)

イヨト イヨト イヨト

Warm up: classical spin waves in a ferromagnetic chain

Energy:

$$E = \sum_{i} J \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}$$

Equation of motion:

$$\dot{\mathbf{S}}_i = J\mathbf{S}_i imes (\mathbf{S}_{i-1} + \mathbf{S}_{i+1})$$

Assuming small deviation from equilibrium:

$$\delta \dot{S}_{i}^{x} = JS(-\delta S_{i-1}^{y} - \delta S_{i+1}^{y} + 2\delta S_{i}^{y})$$

$$\delta \dot{S}_{i}^{y} = JS(\delta S_{i-1}^{y} + \delta S_{i+1}^{y} - 2\delta S_{i}^{y})$$

Sándor Tóth (Paul Scherrer Institut)

August 17, 2015 16 / 48

・ 同 ト ・ ヨ ト ・ ヨ ト

Warm up: classical spin waves in a ferromagnetic chain

Using the spin precession ansatz:

$$\omega \delta S_i^y = JS(2\delta S_i^y \cos(\mathbf{k} \cdot \mathbf{a}) - 2\delta S_i^y)$$

Spin wave dispersion:

$$\omega = 2JS(\cos(\mathbf{k} \cdot \mathbf{a}) - 1)$$

Presentation Outline

Motivation

- 2 Magnetism in solid state physics
- 3 Inelastic neutron scattering
- 4 Classical spin wave theory
- 5 Semiclassical spin wave theory of single-Q structures
 - 6 General spin Hamiltonian: SpinW
- 🕖 Practical

8 Summary

- **(())) (())) ())**

Spiral ground state

- Frustration: geometrical competing interactions
- Degenerate ground states
- Weak interactions (e.g. order by disorder) select state from manifold

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Luttinger-Tisza theory

The classical ground state of a Heisenberg Hamiltonian on the Bravais lattice is always a single-Q spiral.

Sándor Tóth (Paul Scherrer Institut)

August 17, 2015 19 / 48

-

Spiral ground state

Heisenberg Hamiltonian (Bravais lattice):

$$\mathcal{H} = \sum_{ij} J_{ij} S_i S_j$$

Magnetic structure:

$$\mathbf{S}_i = \sum_{\mathbf{k}} \mathbf{F}_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{r}_i}$$

 $\mathbf{F}_{\mathbf{k}} = \overline{\mathbf{F}}_{-\mathbf{k}}$

Spiral ansatz: there is only a single k vector (Q)

$$\mathbf{S}_i = S\left(\mathbf{u}\cos(\mathbf{Q}\cdot\mathbf{r}_i) + \mathbf{v}\sin(\mathbf{Q}\cdot\mathbf{r}_i)\right)$$

Spiral ground state

Classical energy:

$$E = S^2 \min(J(\mathbf{k})) \rightarrow \mathbf{Q}$$

where:

$$J(\mathbf{k}) = \sum_{\mathbf{d}} J(\mathbf{d}) e^{i\mathbf{k}\cdot\mathbf{d}}$$

d in l.u.	exchange
(1,0,0)	J_1
(-1,0,0)	J_1
(2,0,0)	J_2
(-2,0,0)	J_2

3

A (10) A (10) A (10)

21 / 48

Quantum mechanical treatment of spin waves

- Same ground state and dispersion as for the classical model
- Excitations are quasiparticles: magnons
 - bosons
 - commutator : $[a, a^+] = 1$
 - Bose-Einstein statistics: $n(\omega) = \frac{1}{\exp(\hbar\omega/k_BT)-1}$
- Equivalent to coupled quantum harmonic oscillators:
 - zero point energy
 - ightarrow reduction of magnetic order
 - ightarrow quantum order by disorder
- Strong magnon-magnon interaction in non-collinear magnets

イロト イポト イヨト イヨト 二日

Rotating coordinate system

Coordinate transformation:

$$\begin{split} S_i^x &= S_i^{\eta} \\ S_i^y &= S_i^{\mu} \cos(\varphi_i) + S_i^{\xi} \sin(\varphi_i) \\ S_i^z &= -S_i^{\mu} \sin(\varphi_i) + S_i^{\xi} \cos(\varphi_i) \end{split}$$

Rotation angle:

$$\varphi_i = \mathbf{Q} \cdot \mathbf{r}_i$$

In the rotating coordinate system: ferromagnet

Hamiltonian

Heisenberg Hamiltonian on Bravais lattice:

$$\mathcal{H} = \sum_{i,d} J(d) \mathbf{S}_i \cdot \mathbf{S}_{i+d}$$

After substitution and a bit of trigonometry:

$$\begin{split} \mathcal{H} = & \sum_{i,j} J(\mathbf{d}_{ij}) \left(S_i^{\eta} S_j^{\eta} + \sin(\mathbf{Q} \cdot \mathbf{d}_{ij}) (S_i^{\mu} S_j^{\xi} - S_i^{\xi} S_j^{\eta}) \right) + \\ & + \cos(\mathbf{Q} \cdot \mathbf{d}_{ij}) \left(S_i^{\mu} S_j^{\mu} + S_i^{\xi} S_j^{\xi} \right) \end{split}$$

Sándor Tóth (Paul Scherrer Institut)

3

イロト イヨト イヨト イヨト

Spin algebra

Spin state (in small field along z-axis):

$$|n\rangle \equiv |S,m=S-n\rangle$$

Ladder operators for spin:

$$S^{-}|n\rangle = \sqrt{2S}\sqrt{1 - \frac{n}{2S}}\sqrt{n + 1}|n + 1\rangle$$
$$S^{+}|n\rangle = \sqrt{2S}\sqrt{1 - \frac{n - 1}{2S}}\sqrt{n}|n - 1\rangle$$

Ladder operators for harmonic oscillator:

$$a^+|n
angle = \sqrt{n+1}|n+1
angle$$
 $[a,a^+] = 1$
 $a|n
angle = \sqrt{n}|n-1
angle$

Sándor Tóth (Paul Scherrer Institut)

3

25 / 48

- 4 同 6 4 日 6 4 日 6

Holstein-Primakoff transformation

Ladder operators for spin:

$$S^{-} = \sqrt{2S}a^{+}\hat{f}$$
$$S^{+} = \sqrt{2S}\hat{f}a$$
$$\hat{f} = \sqrt{1 - \frac{n}{2S}}$$

Spin wave approximation

Sándor

Assuming $\langle n \rangle << S$ the coupled harmonic oscillator is a good model. The excited states of the harmonic oscillator are magnons.

$$S_{i}^{\eta} = 1/2(S^{+} + S^{-}) = \sqrt{S/2}(a_{i}^{+} + a_{i})$$

$$S_{i}^{\mu} = -i/2(S^{+} - S^{-}) = \sqrt{S/2}(a_{i}^{+} - a_{i})$$

$$S_{i}^{\xi} = S - n_{i} = S - a_{i}^{+}a_{i}$$

$$S_{i}^{\xi} = S - n_{i} = S - a_{i}^{+}a_{i}$$

$$S_{i}^{\xi} = S - n_{i} = S - a_{i}^{+}a_{i}$$

$$S_{i}^{\xi} = S - n_{i} = S - a_{i}^{+}a_{i}$$

$$S_{i}^{\xi} = S - n_{i} = S - a_{i}^{+}a_{i}$$

$$S_{i}^{\xi} = S - n_{i} = S - a_{i}^{+}a_{i}$$

$$S_{i}^{\xi} = S - n_{i} = S - a_{i}^{+}a_{i}$$

Quadratic form

After substitution into the spin Hamiltonian, such as:

...

$$S_i^{\eta}S_j^{\eta} = S/2(a_i^+ + a_i)(a_j^+ + a_j)$$

The terms can be expanded in the number of boson operators, each consecutive term gain a constant factor of $1/\sqrt{S}$. Constant term:

$$E = S^2 \sum_{i,\mathbf{d}} J(\mathbf{d}) \cos(\mathbf{Q} \cdot \mathbf{d})$$

1 operator term:

$$\mathcal{H}_1 = S^{3/2} \sum_{i,j} \frac{i}{2} J(\mathbf{d}_{ij}) \sin(\mathbf{Q} \cdot \mathbf{d}_{ij}) (\mathbf{a}_i^+ - \mathbf{a}_i + \mathbf{a}_j - \mathbf{a}_j^+)$$

Sándor Tóth (Paul Scherrer Institut)

27 / 48

Quadratic form

2 operator term:

$$egin{aligned} \mathcal{H}_2 =& S\sum_{ij}rac{1}{2}J(\mathbf{d}_{ij})\Big\{(1-\cos(\mathbf{Q}\cdot\mathbf{d}_{ij}))(a_ia_j+a_ia_j)+\ &+(1+\cos(\mathbf{Q}\cdot\mathbf{d}_{ij}))(a_ia_j^+-a_i^+a_j)-2\cos(\mathbf{Q}\cdot\mathbf{d})(a_i^+a_i+a_j^+a_j)\Big\} \end{aligned}$$

- 3 operator term:
 - non-zero in non-collinear structures
 - changes the ground state
- 4 operator term:
 - renormalizes the magnon dispersion
 - gives finite magnon lifetime

3

A B A A B A

Diagonalization of the quadratic form

To separate the mixing of the operators on different sites, we introduce a Fourier transformation:

$$a_i = rac{1}{\sqrt{L}} \sum_{\mathbf{k} \in B.Z.} a(\mathbf{k}) e^{-i\mathbf{k}\cdot\mathbf{r}_i}$$
 $a(\mathbf{k}) = rac{1}{\sqrt{L}} \sum_i a_i e^{i\mathbf{k}\cdot\mathbf{r}_i}$

After substitution:

$$\begin{aligned} \mathcal{H}_2 = & \frac{S}{2} \sum_{\mathbf{k}} \left(J(\mathbf{k}) - \frac{J(\mathbf{k} + \mathbf{Q}) + J(\mathbf{k} - \mathbf{Q})}{2} \right) \left(a_{\mathbf{k}} a_{-\mathbf{k}} + a_{\mathbf{k}}^+ a_{-\mathbf{k}}^+ \right) + \\ & + \left(J(\mathbf{k}) + \frac{J(\mathbf{k} + \mathbf{Q}) + J(\mathbf{k} - \mathbf{Q})}{2} \right) \left(a_{\mathbf{k}} a_{\mathbf{k}}^+ + a_{\mathbf{k}}^+ a_{\mathbf{k}} \right) - 4J(\mathbf{Q}) a_{\mathbf{k}}^+ a_{\mathbf{k}} \end{aligned}$$

Sándor Tóth (Paul Scherrer Institut)

29 / 48

Diagonalization of the quadratic form

In matrix form:

$$\mathcal{H}_2 = \sum_{\textbf{k}} \textbf{x}^\dagger \textbf{H} \textbf{x}$$

Vector of boson operators:

$$\mathbf{x} = \left[egin{array}{c} a_{\mathbf{k}} \ a_{-\mathbf{k}}^+ \end{array}
ight]$$

Matrix of the Hamiltonian:

$$H = \begin{bmatrix} A & B \\ B & A \end{bmatrix}$$

$$A = J(\mathbf{k}) + J(\mathbf{k} + \mathbf{Q})/2 + J(\mathbf{k} - \mathbf{Q})/2 - 2J(\mathbf{Q})$$

$$B = J(\mathbf{k}) - J(\mathbf{k} + \mathbf{Q})/2 - J(\mathbf{k} - \mathbf{Q})/2$$

Sándor Tóth (Paul Scherrer Institut)

30 / 48

Diagonalization of the quadratic form

New operator b with the following transformation:

$$b = ua + va^+$$

 $b^+ = ua^+ + va$

The new operator has to fulfill the commutation relations: $[b, b^+] = 1$ $\rightarrow u^2 + v^2 = 1$

With the right parameter choice:

$$\mathcal{H}_2 = \sum_{\mathbf{k}} \omega_{\mathbf{k}} \Big(b^+ b + rac{1}{2} \Big)$$

And the spin wave dispersion:

$$\omega_{\mathbf{k}} = \sqrt{A^2 - B^2}$$

The above calculation is equivalent to solving the eigenvalue problem of gH, where $g = [\mathbf{x}, \mathbf{x}^{\dagger}]$ commutator matrix.

Sándor Tóth (Paul Scherrer Institut)

Linear spin wave theory

August 17, 2015 31 / 48

Spin-spin correlation function

Neutron scattering cross section of interacting spin systems:

$$rac{d^2\sigma}{d\Omega dE} = C \cdot F^2(\mathbf{k}) \sum_{lphaeta} \left(\delta_{lphaeta} - \hat{k}_{lpha} \hat{k}_{eta}
ight) S^{lphaeta}(\omega,\mathbf{k})$$

Correlation function:

$$S^{lphaeta}(\omega,{f k})=\int_{-\infty}^\infty\sum_{i,j}dt\exp(-i\omega t)\langle S^lpha_iS^eta_j(t)
angle$$

Sándor Tóth (Paul Scherrer Institut)

3

Out-of-plane correlation function

Correlation function:

$$S^{xx}(t,\mathbf{k}) = \frac{1}{L^2} \sum_{i,j} \langle S_i^x S_j^x(t) \rangle e^{i\mathbf{k} \cdot \mathbf{d}_{ij}}$$
$$= \frac{S}{2} \sum_{\mathbf{k}} \langle a_{-\mathbf{k}}^+ a_{\mathbf{k}}^+(t) + a_{-\mathbf{k}} a_{\mathbf{k}}(t) + a_{\mathbf{k}}^+ a_{\mathbf{k}}(t) + a_{\mathbf{k}} a_{\mathbf{k}}^+(t) \rangle$$

After conversion into b and b^+ operators and Fourier transformation in time:

$$S^{\mathsf{x}\mathsf{x}}(\omega,\mathbf{k}) = S\frac{A_{\mathbf{k}} - B_{\mathbf{k}}}{\omega_{\mathbf{k}}} \cdot \delta(\omega - \omega_{\mathbf{k}}) \cdot (n_{\omega} + 1)$$

using:

$$\langle b_{\mathbf{k}}^{+}b_{\mathbf{k}}(t)\rangle = n_{\omega}e^{-i\omega_{\mathbf{k}}t}$$

Sándor Tóth (Paul Scherrer Institut)

In-plane correlation function

Correlation function:

$$S_i^{\mathbf{y}}S_j^{\mathbf{y}}(t) = -\frac{S}{2}\sum_{i,j}\cos(\mathbf{Q}\cdot\mathbf{d}_{ij})\langle a_i^+a_j^+(t) + a_ia_j(t) - a_ia_j^+(t) - a_i^+a_j(t)\rangle$$

After Fourier transform the $cos(\mathbf{Q} \cdot \mathbf{d}_{ij})$ brings in a $\pm \mathbf{Q}$ shift in reciprocal space:

$$S^{yy}(\omega, \mathbf{k}) = S^{zz}(\omega, \mathbf{k}) = rac{1}{4} \Big(S^{\xi\xi}(\omega, \mathbf{k} - \mathbf{Q}) + S^{\xi\xi}(\omega, \mathbf{k} + \mathbf{Q}) \Big)$$

Where the correlation function in the rotating frame:

$$S^{\xi\xi}(\omega,\mathbf{k}) = S\frac{A_{\mathbf{k}} + B_{\mathbf{k}}}{\omega_{\mathbf{k}}} \cdot \delta(\omega - \omega_{\mathbf{k}}) \cdot (n_{\omega} + 1)$$

Sándor Tóth (Paul Scherrer Institut)

Triangular lattice antiferromagnet

Exchange couplings:

$$J(\mathbf{k}) = \sum_{i=1}^{3} J \cos(\mathbf{k} \cdot \mathbf{e}_i)$$

The three bond vectors:

$$\begin{aligned} \mathbf{e}_1 &= (1,0) \\ \mathbf{e}_2 &= (-1/2,\sqrt{3}/2) \\ \mathbf{e}_3 &= (-1/2,-\sqrt{3}/2) \end{aligned}$$

Classical ground state: $\mathbf{Q} = (1/3, 1/3)$

Triangular lattice antiferromagnet

Powder spectrum

red: out-of-plane correlations (phason mode) blue: in-plane correlations Goldstone modes at $\pm {\bf Q}$

due to spontaneous breaking of continuous symmetry

Presentation Outline

Motivation

- 2 Magnetism in solid state physics
- Inelastic neutron scattering
- 4 Classical spin wave theory
- 5 Semiclassical spin wave theory of single-Q structures

6 General spin Hamiltonian: SpinW

Practical

8 Summary

General spin Hamiltonian

General spin Hamiltonian:

$$\mathcal{H} = \sum_{ni,mj} \mathbf{S}_{ni}^{\mathsf{T}} \mathsf{J}_{ni,mj} \mathbf{S}_{mj} + \sum_{ni} \mathbf{S}_{ni}^{\mathsf{T}} \mathsf{A}_{ni} \mathbf{S}_{ni} + \mu_B \mathbf{H}^{\mathsf{T}} \sum_{ni} \mathsf{g}_{ni} \mathbf{S}_{ni}$$

Anisotropic and antisymmetric (Dzyaloshinskii-Moriya) exchange interactions:

$$J_{H} = \begin{bmatrix} J & 0 & 0 \\ 0 & J & 0 \\ 0 & 0 & J \end{bmatrix}; \quad J_{DM} = \begin{bmatrix} 0 & D^{z} & -D^{y} \\ -D^{z} & 0 & D^{x} \\ D^{y} & -D^{x} & 0 \end{bmatrix}$$

Sándor Tóth (Paul Scherrer Institut)

3

General spin Hamiltonian

Non-Bravais lattice:

 $\ensuremath{\,\bullet\,}$ additional rotation on every site within unit cell

General interactions:

• multi-q magnetic ground states are possible SpinW

- solves the general spin Hamiltonian
- calculates spin-spin correlation function
- numerical and symbolical
- can apply crystal symmetry operators on the Hamiltonian
- solves single-q magnetic structures
- solves multi-q magnetic structures on a magnetic supercell
- open source, runs on Matlab
- download: http://www.psi.ch/spinw

E Sac

SpinW workflow

Sándor Tóth (Paul Scherrer Institut)

(日) (周) (三) (三)

40 / 48

3

SpinW: triangular lattice AF

```
tri = sw;
tri.genlattice('lat_const',[3 3 4],'angled',[90 90 120])
tri.addatom('r',[0 0 0],'S',1)
```



```
tri.addmatrix('value',1,'label','J')
tri.addmatrix('value',diag([0 0 0.2]),'label','D')
tri.gencoupling
tri.addcoupling('J',1)
tri.addaniso('D')
tri.genmagstr('mode','helical','S',[0; 1; 0],...
'k',[1/3 1/3 0],'n', [0 0 1])
```


SpinW: triangular lattice AF

```
spec = tri.spinwave({[0 0 0] [1 1 0] 500});
spec = sw_neutron(triSpec);
spec = sw_egrid(spec);
```


- 4 同 6 4 日 6 4 日 6

Presentation Outline

Motivation

- 2 Magnetism in solid state physics
- Inelastic neutron scattering
- 4 Classical spin wave theory
- 5 Semiclassical spin wave theory of single-Q structures
- 6 General spin Hamiltonian: SpinW

3) Summary

3

What comes...

After the break:

- hands on SpinW
- analyze the magnetic order and spin waves on the FCC lattice
- preparation to the experiment on TASP
- On the weekend (for those who registered):
 - neutron scattering on MnS₂ FFC antiferromagnet
 - elastic magnetic scattering
 - we will measure spin wave dispersion, maybe diffuse scattering
 - improve on this old data:
 - T. Chattopadhyay, et al., Phys. B Cond. Mat. 156, 241 (1989).

イロト 不得下 イヨト イヨト

Practical

MnS_2

 MnS_2 crystal structure with spin interactions

Single crystal of MnS₂ (hauerite).

イロト イヨト イヨト イヨト

45 / 48

Presentation Outline

Motivation

- 2 Magnetism in solid state physics
- Inelastic neutron scattering
- 4 Classical spin wave theory
- 5 Semiclassical spin wave theory of single-Q structures
- 6 General spin Hamiltonian: SpinW
- Practical

3

Summary

- Origin of atomic magnetism and magnetic interactions in solids
- Classically there is always a spin wave solution
- Example: ferromagnetic chain
- Quantum mechanically:
- Equivalence with coupled quantum harmonic oscillators
- Frustration leads to spiral ground state
- Calculation of spin wave dispersion of a single-Q spiral
- Introduction to SpinW
- References:
- R. Skomski: Simple models of magnetism
- N. Majlis: The quantum theory of magnetism
- G. Squires: Introduction to the theory of thermal neutron scattering

ST and Bella Lake: Linear spin wave theory for single-Q magnetic structures, JPCM, 16, 166002 (2015), ArXiv:1402.6069

Sándor Tóth (Paul Scherrer Institut)

3

Thank you!

Sándor Tóth (Paul Scherrer Institut)

Linear spin wave theory

August 17, 2015 48 / 48

3

<ロ> (日) (日) (日) (日) (日)