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Contemporary Supercomputing
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Supercomputers – the most performant, general 
purpose HPC systems at any given time 

2

Cray XC system – presently one of the best-selling supercomputing 
platforms – was funded by the DARPA HPCS* program

(*) HPCS stand for “High Productivity Computing Systems”

Hardware developments were successful, but none of the HPCS’ high-
productivity languages (Chapel and X10) have been widely adopted
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Does this mean performance is 
important, but not productivity?
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Performance: floating point operations

4

www.top500.org www.green500.org

FLOP/s

FLOP/s/W
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1000-fold performance improvement per decade

5

www.top500.org

1st app. at > 1 TFLOP/s sustained

1st app. at > 1 PFLOP/s sustained

http://www.top500.org
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“Only” 100-fold improvement for climate codes

6

Source: Peter Bauer, ECMWF
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Has efficiency of climate codes 
dropped 10-fold every decade decade?
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Revisiting the FLOP/s and GFLOP/s/W metrics

8

Metric for time to solution in High-Performance LINPACK benchmark:

… and a metric for energy to solution of HPL:

(1) high arithmetic density increases with problem size: 
# of FLOP

# of load-stores
/ O(N)

(2) thus, it is reasonable to measure work in number of retired floating point operations (                   ),totFLOP

(1) normalised energy to solution      by simple measure of work 

(3) and to normalised the time to solution                       and performance                                         accordingly

(2) minimising energy to solution is equivalent to maximising 

FLOP/s and GFLOP/s/W are good metrics for HPL, but is this true for all motifs?

(3) ... and of course
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Peak performance is algorithm dependent

9

source: lorena a. barba group  
             (lorenabarba.com)

Peak performance varies with arithmetic density of algorithm / code / benchmark

Materials science / HPLClimate / HPCG

http://lorenabarba.com
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Generic performance metrics in HPC

10

Energy & Time
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Optimising Time and Energy to Solution

11

Energy to solution (ETS):  
• energy is directly proportional to cost (energy = power x time) 
• given all operational constraints, energy should be minimised

Time to solution (TTS): 
• do we have to minimise time to solution? 
• no, it just needs to be good enough to meet operational constrains
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Today’s (2015) production suite of Meteo Swiss

12

ECMWF  
2x per day 
16 km lateral grid, 91 
layers

COSMO-7  
3x per day 72h forecast 
6.6 km lateral grid, 60 layers

COSMO-2 
8x per day 24h forecast 
2.2 km lateral grid, 60 
layers

Some of the products generate from these simulations: 
‣ Daily weather forecast on TV / radio 
‣ Forecasting for air traffic control (Sky Guide) 
‣ Safety management in event of nuclear incidents
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“Albis” & “Lema”, CSCS production systems for Meteo Swiss 

13

Cray XE6 procured in spring 2012 based on 12-core AMD Opteron multi-core processors
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Cloud resolving simulations

14

187 km

187 km

10 km

COSMO model setup: Δx=550 m, Δt=4 sec      Plots generated using INSIGHT

Source: Wolfgang Langhans and Christoph Schär, Institute for Atmospheric and Climate Science, ETH Zurich

Cloud ice 

Cloud liquid water 

Rain 

Accumulated surface 
precipitation

Orographic convection – simulation: 11-18 local time, 11 July 2006 (Δt_plot=4 min)

Institute for Atmospheric and Climate Science Study at ETH Zürich (Prof. Schär) demonstrates cloud 
resolving models converge at 1-2km resolution (at least for convective clouds over the alpine region)
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Improve resolution of Meteo Swiss model from 2 to 1 km

15

2x

2x

~2-3x

Time

Run on 4x the 
number of 
processors

Sequential

Doubling the 
resolution requires 
~10x performance 

increase
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Prognostic uncertainty

16

The weather system is chaotic 
 à rapid growth of small perturbations (butterfly effect)

Prognostic timeframeStart

Ensemble method: compute distribution over many simulations 
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Improving simulation quality requires higher 
performance – what exactly and by how much?

17

Resource determining factors for Meteo Swiss’ simulations 

COSMO-2: 24h forecast running in 30 min.  
                   8x per day

COSMO-1: 24h forecast running in 30 min.  
                   8x per day (~10x COSMO-2)

COSMO-2E: 21-member ensemble,120h forecast 
                     in 150 min., 2x per day (~26x COSMO-2)

KENDA: 40-member ensemble,1h forecast 
               in 15 min., 24x per day (~5x COSMO-2)

Current model running through mid 2016 New model starting operation on in Jan. 2016

New production system must deliver 
~40x the simulations performance 

of “Albis” and “Lema”
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• New system need to be installed Q2/2015 

• Assuming 2x improvement in per-socket performance: 
~20x more X86 sockets would require 30 Cray XC cabinets

Current Cray XC30/XC40 platform  
(space for 40 racks XC)

New system for Meteo Swiss if we 
build it like the German Weather 
Service (DWD) did theirs, or UK Met 
Office, or ECMWF … (30 racks XC)

Albis & Lema: 3 cabinets Cray XE6 installed Q2/2012

Thinking inside the box is not a good option!
CSCS machine room

State of the art implementation  
of new system for Meteo Swiss
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“Piz Daint,” a productive supercomputer with CPU-GPU nodes

• Cray XC30 with 5272 compute nodes, each with one 8-core Xeon CPU and one K20X GPU 
• Fully populated dragonfly: global bandwidth per node matches injection bandwidth 
• Developed with application performance in mind: CP2K, COSMO, SPECFEM, GROMACS, Q.E. 
• Co-designed with CP2K and COSMO-OPCODE 
• Final upgrade 10/2013; accepted 12/2013; early science 01-03/2014; full operation since 04/2014
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COSMO-2 running on the GPUs of “Piz Daint” 

20
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COSMO: current and new (HP2C developed) code

21

main (current / Fortran)

physics 
(Fortran)

dynamics (Fortran)

MPI

system

main (new / Fortran)

physics 
(Fortran) 

with OpenMP / 
OpenACC

dynamics (C++)

MPI or whatever

system

Generic 
Comm. 
Library

boundary 
conditions & 
halo exchg.

stencil library

X86 GPU

Shared 
Infrastructure
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Speedup of COSMO-2 production problem – apples to apples 
comparison with 33h forecast of Meteo Swiss

22

Monte Rosa 
Cray XE6 

(Nov. 2011)

Tödi 
Cray XK7 

(Nov. 2012)

Piz Daint 
Cray XC30 
(Nov. 2012)

Piz Daint 
Cray XC30 hybrid (GPU) 

(Nov. 2013)

1x

2x

3x

4x

Current production code

1x

2x

3x

4x

1.35x

1.77x

1.67x 3.36x

New HP2C funded code

1.4x

1.49x 2.5x
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Energy to solution (kWh / ensemble member)

23

Cray XE6 
(Nov. 2011)

Cray XK7 
(Nov. 2012)

Cray XC30 
(Nov. 2012)

Cray XC30 hybrid (GPU) 
(Nov. 2013)

6.0

4.5

3.0

1.5

Current production code

1.75x

New HP2C funded code

1.41x

1.49x

2.51x

2.64x

6.89x3.93x
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30 cabinets

CSCS machine room
24

Piz Daint

20 cabinetsUsing the refactored code on conventional X86 

12 
cabinets

Using same implementation as on “Piz Daint”

6Modifying parts of the model to single precision

Further options: increase GPU density,  use K40 or K80 …

Unconventional implementation 
of new system for Meteo Swiss

2
The new Meteo Swiss system “Piz Kesh”
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Materials and human evolution

28

Stone age
Bronze age

Iron age
Nuclear age

Silicon age
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Serendipitous discovery & Edisonian development
• Most new materials are discovered serendipitously (particularly true for complex materials) 
• Or through very laborious searches, e.g. 

• Edison tested 3000 materials for his filament and settled on burned sewing thread 
• Haber-Bosh ammonia synthesis with osmium as a catalyst 
Mitasch (BASF) tested ~22,000 materials to find iron-based catalyst – still in use today 

• Norskov showed in 2009 that CoMo is a more efficient & inexpensive catalyst

in Fig. 8d. A highly selective catalyst will have very low ethane 
production, even at high conversion, where the amount of acetylene 
in the reactants is small. Different NiZn catalysts were compared 
with a model PdAg catalyst. Pure Pd has a reasonably good 
selectivity, but the PdAg alloy shows a very high selectivity even 
at high conversions. Nickel is considerably worse than palladium, 
but as expected from Fig. 8b, adding increasing amounts of zinc 
increases the selectivity substantially. The NiZn catalyst with the 
highest zinc content had selectivity comparable to the best PdAg 
catalyst that was tested.

The fact that it has been possible to tailor surfaces with improved 
catalytic properties from theoretical insights and DFT calculations 
provides some hope that this may develop into a more generally 
versatile design strategy. There are, however, a number of 
challenges ahead.

First, it should be realized that finding leads for new catalysts 
is only one step towards a new technical catalyst. High catalytic 
activity or selectivity and low constituent cost can be necessary 
requirements for a new catalyst, but long-term stability, lack of 
side-products, resistance to poisons, susceptibility to promoters and 
cost of production are equally important factors. To some extent 
these factors may also be simulated, but in the end, experimental 
studies under realistic conditions will always be central to creating 
technical catalysts.

An important extension of the notion of DFT-based catalyst 
design is the use of DFT calculations in reactor design. The first 
steps in this direction were taken for the ammonia synthesis 
process in which it proved possible to link the atomic-scale 
insight obtained by DFT calculations directly with the industrial 
chemical engineering practice as illustrated in Fig. 9. In an 
industrial ammonia synthesis reactor there are several catalyst 
beds with cooling stages in between as illustrated in Fig. 9a. The 
cooling stages are introduced so as to operate as close to the 
maximum rate line (red in Fig. 9a) as possible. The important 
notion is that the position of the maximum for the volcano curve 
(Fig. 9b) is a strong function of the operating conditions. At 
low ammonia concentrations (reactor inlet), Fe is the preferred 
elemental catalyst, whereas at high ammonia concentrations 
(reactor outlet), Ru is the preferred elemental catalyst. The 
optimal catalyst curves (Fig. 9c) express the properties of the 
optimal catalyst at given reaction conditions plotted with the 
operating line. Thus, this illustrates the value(s) of the activity 
descriptor(s) at the maximum of the volcano curve at the given 
reaction conditions. The key concept is that the structure and 
composition of the optimal catalyst is a function of the reaction 
conditions, and as these vary throughout industrial reactors, it is 
desirable to perform the computational screening as a function 
of all possible reaction conditions. This might also, in a longer 
perspective, be a way to identify radically new catalysts rather 
than simply improving the performance of known catalysts. 
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uring the past century chemists have developed efficient 
chemical reactions for converting fossil resources into a 
broad range of fuels and chemicals, and this can be consid-

ered one of the most important and far-reaching scientific devel-
opments up to now. Today, essentially all transportation fuels are 
refined in a number of catalytic processes and most chemicals are 
also produced using technologies based on catalysis1. A few well-
known examples illustrate the impact: about half of all petrol in the 
world is now produced by fluid catalytic cracking using specially 
designed zeolite catalysts, and the Haber–Bosch process — featur-
ing an iron catalyst — continues to have a key role in the production 
of fertilizers. The list of important small- and large-scale processes 
by which fossil resources are converted into fuels and chemicals is 
almost endless.

Such catalytic technologies have also resulted in various 
environmental issues — even the best processes do not allow a 
complete elimination of undesirable byproducts. Many innovative, 
catalytic technologies have subsequently been implemented to 
remedy these new problems; one famous example is the precious-
metal-based three-way catalyst installed in most petrol-fuelled 
passenger cars. Moreover, these developments have contributed to 
an increased use of fossil resources and thus to the increasing carbon 
dioxide levels in the atmosphere. Currently, there is a significant 
drive to relinquish our dependence on fossil fuels and to minimize 
the emission of carbon dioxide. Clearly, this calls for many new and 
improved catalytic processes, and for catalytic technologies that 
focus on prevention rather than on remediation.

Reducing environmental impact will require entirely new 
catalysts: catalysts for new processes, more active and more selective 
catalysts and preferably catalysts that are made from earth-abundant 
elements. This represents a formidable challenge and it will demand 
an ability to design new catalytic materials well beyond our present 
capabilities. The ultimate goal is to have enough knowledge of the 
factors determining catalytic activity to be able to tailor catalysts 
atom-by-atom. The catalytic properties of a material are in principle 
determined completely by its electronic structure, so the objective 
is the engineering of electronic structure by changing composition 
and physical structure. The approach is illustrated in Fig. 1. Over 
the past few decades our understanding of why particular materials 
are good catalysts for given reactions has improved. The challenge 

is to invert this problem; given that we need to catalyse a certain 
reaction under a set of specified conditions, which material should 
we choose?

The aim of controlling matter at the molecular scale by 
engineering the electronic structure is not restricted to catalytic 
materials; it is a general challenge in chemistry, physics and 
materials science, and there is considerable progress in several 
areas such as materials for batteries2, hydrogen storage3, optical 
absorption4 and molecules for homogeneous catalysis5,6. Catalysis 
at surfaces is particularly well suited for electronic structure 
engineering, primarily because the link between the atomic-scale 
properties and the macroscopic functionality — the kinetics — is 
well developed. In addition, the theoretical description of surface 
reactions has been enhanced considerably by the availability of a 
large number of quantitative experimental surface-science studies 
of adsorption and reaction phenomena7–12. 

Here, we review some of the first examples of the computer-based 
design of solid catalysts. We introduce a number of concepts linking 
catalytic performance to the properties of the catalyst’s surface, and 
in turn discuss how the surface electronic structure determines the 
catalytic properties. Finally, we discuss some of the challenges ahead.

The extraordinary progress in density functional theory (DFT) 
calculations for surface processes is the key development that has 
created the possibility of computer-based catalyst design13. Current 
methods are fast enough to allow the treatment of complex, extended 
systems14,15. They can also now provide the interaction energies of 
molecules and atoms with metal surfaces with sufficient accuracy to 
describe trends in reactivity for transition metals and alloys16.

There are now several cases where the complete kinetics of a 
catalytic reaction has been evaluated solely on the basis of DFT 
calculations of reaction barriers, reaction energies and the associated 
entropies17–20. Figure 2 shows the comparison between calculated 
and measured rates for three different reactions and catalytic 
surfaces. Overall, the agreement between DFT-based kinetic models 
and experiment is surprisingly good, and they serve to illustrate the 
accuracy and value of current density functional theory.

The agreement between theory and experiment is particularly 
noteworthy in two cases for supported metal catalysts (ruthenium 

Nicola Marzari
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Systematic searches with high-throughput & capability runs

• There are ~150,000 known inorganic materials with published structures 
• Very basic properties computed with DFT-based quantum simulations take ~10 minutes on a powerful 
workstation (e.g. hybrid CPU-GPU) 

• “Piz Daint” with 5272 hybrid CPU-GPU nodes could scan ~5000 structures / 10 minutes

But we want to study more complex, harder to compute properties – how complex? 
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Approaching the problem form the other end

31

Start with the most reliable (and expensive) approach to electronic structure …

… and the largest problem that is reasonable* for materials searches …

… and bet on future improvements in extreme-scale computing

Linearised Augmented Plane Wave Method (LAPW)

~1000 atoms in a unit cell – the “1000-atom problem” **

novel architectures and exa-scale computing

(**) proposed by Claudia Draxl at a PRACE project meeting in spring 2011
(*) Using W. Kohn’s arguments on nearsightedness of electronic matter
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Solving the Kohn-Sham Equations is the bottleneck in most 
DFT-based materials science codes

32

⇥i(⇤r) =
X

µ

ciµ�µ(⇤r)Ansatz

Hµ� =

Z
�⇤
µ(⇥r)

✓
� ~2
2m

r2 + vLDA(⇥r)

◆
��(⇥r)d⇥rHermitian matrix

Sµ� =

Z
�⇤
µ(⇥r)��(⇥r)d⇥rBasis is not orthogonal

(H� "iS) = 0Solve generalized eigenvalue problem
where we are usually interested in about 10-50% of spectrum

✓
� ~2
2m

r2 + vLDA(⇤r)

◆
⇥i(⇤r) = �i⇥i(⇤r)Kohn-Sham Eqn.
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We need eigenvectors as well, to compute the density:
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Generalised eigenvalue problem in the LAPW

33

X
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'G+k(r) =

8
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>>>:
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Generalised eigenvalue problem in the LAPW 
(cont.)

34
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Generalised eigenvalue problem in the LAPW 
(cont.)

35
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Each MPI rank gets a panel of tilesInitial data is distributed 
in a block-cyclic fashion

The slices of whole vectors are
gathered on each MPI rank

MPI ranks of each column swop
blocks of panels

M
PI

 c
om

m
un

ic
at

io
n

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

Fig. 1. (color online) ‘Panel’ and ‘slice’ storage of the data. For parallel linear algebra operations array has to be distributed in a block-cyclic fashion over a 2D
grid of MPI ranks. In order to perform a local operation on a whole vector, the slices of vectors are gathered from panels or created locally on the corresponding
row ranks of the MPI grid. To perform a distributed operation with PBLAS or ScaLAPACK the vectors are shuffled to the ’panel’ storage.

Thus the LAPW basis functions are given by:
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where ⇥(G) is Fourier transform of the unit step function1.

For an efficient high-performance implementation of the
methods it is important to notice that the contribution of the
overlap matrix inside the spherical regions is nothing but a
multiplication of two matching coefficient arrays with the
summation over a composite index {↵, L, ⌫}. Similarly, the
Hamiltonian matrix can be written in a form that involves
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are, respectively, the radial Hamiltonian integrals and complex
Gaunt coefficients.

For ⇠1000 atom problems the resulting generalized eigen-
value problem must be solved for a dense, complex Hermitian
matrix with dimension of order 105. Since in a materials design
problem these simulations will have to run abundantly on large
parallel supercomputers that cannot hold these matrices on
individual nodes, the implementation must be designed for
distributed memory architectures. Thus the underlying arrays
have to be partitioned in such a way that the above construction
can be executed with minimum communication and results in
Hamiltonian and overlap matrices that have the desired block-
cyclic data distribution of the distributed eigensolver.

Thus, the matrix multiplies in equations (6) and (7) imply
a block-cyclic distribution for the array Ak

↵L⌫(G) of matching
coefficients, where G-vector and composite {↵, L, ⌫} indices
are distributed over, respectively, the columns and rows of a
2D MPI grid. This distribution, however, is very inefficient for
the computation of the auxiliary array Bk

↵L⌫(G) (Eq. 8), the
reason being, that in order to compute a local panel of B-
coefficients the sum over {L2, ⌫2} indices is needed which
may run out of scope of the current MPI rank. This is a
well known problem when for some operations (e.g. FFT used
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are, respectively, the radial Hamiltonian integrals and complex
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For ⇠1000 atom problems the resulting generalized eigen-
value problem must be solved for a dense, complex Hermitian
matrix with dimension of order 105. Since in a materials design
problem these simulations will have to run abundantly on large
parallel supercomputers that cannot hold these matrices on
individual nodes, the implementation must be designed for
distributed memory architectures. Thus the underlying arrays
have to be partitioned in such a way that the above construction
can be executed with minimum communication and results in
Hamiltonian and overlap matrices that have the desired block-
cyclic data distribution of the distributed eigensolver.

Thus, the matrix multiplies in equations (6) and (7) imply
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where ⇥(G) is Fourier transform of the unit step function1.
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are, respectively, the radial Hamiltonian integrals and complex
Gaunt coefficients.

For ⇠1000 atom problems the resulting generalized eigen-
value problem must be solved for a dense, complex Hermitian
matrix with dimension of order 105. Since in a materials design
problem these simulations will have to run abundantly on large
parallel supercomputers that cannot hold these matrices on
individual nodes, the implementation must be designed for
distributed memory architectures. Thus the underlying arrays
have to be partitioned in such a way that the above construction
can be executed with minimum communication and results in
Hamiltonian and overlap matrices that have the desired block-
cyclic data distribution of the distributed eigensolver.

Thus, the matrix multiplies in equations (6) and (7) imply
a block-cyclic distribution for the array Ak

↵L⌫(G) of matching
coefficients, where G-vector and composite {↵, L, ⌫} indices
are distributed over, respectively, the columns and rows of a
2D MPI grid. This distribution, however, is very inefficient for
the computation of the auxiliary array Bk

↵L⌫(G) (Eq. 8), the
reason being, that in order to compute a local panel of B-
coefficients the sum over {L2, ⌫2} indices is needed which
may run out of scope of the current MPI rank. This is a
well known problem when for some operations (e.g. FFT used

2surface contribution to kinetic energy can be derived form the Green’s

identity
R
S

f(rg)d~S =
R
V

⇣
f(r2g) + (rf)(rg)

⌘
dV

Generalised eigenvalue problem in the LAPW 
(cont.)

37

X

G0

Hk
GG0Cik

G0 = ✏ik
X

G0

Ok
GG0Cik

G0

Ok
GG0 = h'G+k|'G0+kiOverlap:

Hk
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have to be partitioned in such a way that the above construction
can be executed with minimum communication and results in
Hamiltonian and overlap matrices that have the desired block-
cyclic data distribution of the distributed eigensolver.

Thus, the matrix multiplies in equations (6) and (7) imply
a block-cyclic distribution for the array Ak

↵L⌫(G) of matching
coefficients, where G-vector and composite {↵, L, ⌫} indices
are distributed over, respectively, the columns and rows of a
2D MPI grid. This distribution, however, is very inefficient for
the computation of the auxiliary array Bk

↵L⌫(G) (Eq. 8), the
reason being, that in order to compute a local panel of B-
coefficients the sum over {L2, ⌫2} indices is needed which
may run out of scope of the current MPI rank. This is a
well known problem when for some operations (e.g. FFT used

2surface contribution to kinetic energy can be derived form the Green’s
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Fig. 1. (color online) ‘Panel’ and ‘slice’ storage of the data. For parallel linear algebra operations array has to be distributed in a block-cyclic fashion over a 2D
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For ⇠1000 atom problems the resulting generalized eigen-
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problem these simulations will have to run abundantly on large
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are, respectively, the radial Hamiltonian integrals and complex
Gaunt coefficients.

For ⇠1000 atom problems the resulting generalized eigen-
value problem must be solved for a dense, complex Hermitian
matrix with dimension of order 105. Since in a materials design
problem these simulations will have to run abundantly on large
parallel supercomputers that cannot hold these matrices on
individual nodes, the implementation must be designed for
distributed memory architectures. Thus the underlying arrays
have to be partitioned in such a way that the above construction
can be executed with minimum communication and results in
Hamiltonian and overlap matrices that have the desired block-
cyclic data distribution of the distributed eigensolver.

Thus, the matrix multiplies in equations (6) and (7) imply
a block-cyclic distribution for the array Ak

↵L⌫(G) of matching
coefficients, where G-vector and composite {↵, L, ⌫} indices
are distributed over, respectively, the columns and rows of a
2D MPI grid. This distribution, however, is very inefficient for
the computation of the auxiliary array Bk

↵L⌫(G) (Eq. 8), the
reason being, that in order to compute a local panel of B-
coefficients the sum over {L2, ⌫2} indices is needed which
may run out of scope of the current MPI rank. This is a
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Solving the generalised eigenvalue problem

38

Ax = �Bx

A0y = �y
B = LLHxPOTRF

A0 = L�1AL�HxHEGST

A0y = �yxHEEVx

x = L

�H
yxTRSM

T = QHA0Q xHETRD

Ty0 = �y0 xSTExx

y = Qy0
xUNMTR

Standard 1 stage solver

Most time consuming step, 
dominated by level 2 BLAS 
(memory bound)
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Solving the generalised eigenvalue problem (cont.)

39

Ax = �Bx

B = LLHxPOTRF

A0 = L�1AL�HxHEGST

A0y = �yxHEEVx

x = L

�H
yxTRSM

A0y = �y

Ty0 = �y0

A00 = Q1
HA0Q1

T = Q2
HA00Q2

y00 = Q2y
0

y = Q1y
00

reduction to banded

tri-diagonalize

needs two eigenvector  
transformations  
(but easy to parallelise)

Most time consuming step, 
but dominated by BLAS-3



T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Implementations of two-stage eigen solvers for our problem 
(i.e. with back transformation of eigenvectors)

40

For hybrid CPU-GPU systems: integrated into MAGMA library 

A. Haidar et al., Lecture Notes in Comp. Sci., 7905, 67-80 (2013)

A. Haidar et al., Int. J. of High Perf. Comp. App. 10.1177/1094342013502097 (2013)

R. Solcà et al., in preparation (2015)

For multi-cores systems: ELPA library 
T. Auckenthaler et al., Parallel Comput. vol. 37, no. 12, pp. 783-794 (2011)

A. Marek et al., Psi-K Research Highlight, vol. 2014, no. 1, Jan. 2014  

Remark: built on top of ScaLapack

Remark: distributed version built on top of a distributed implementation of libsciACC
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1000-atom test problem

41

Li intercalated CoO2: 
• 432 formula units CoO2 
• 205 Li atoms 
• 1501 atoms in total

~115,000 basis functions (matrix size)

Running on Cray XC30: 
> CPU runs on Xeon E5-2670 (Sandy Bridge) 
> hybrid: same CPU + Nvidia K20X GPU

User comparable number of sockets
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Results for the full runs (on SCF iteration)

42

active 
sockets

setup, O H 
(sec.)

solve 
(sec.)

rest  
(sec.)

total  
(sec.)

energy 
(kWh)

28x28 (2R:4T) 
ScaLAPACK 392 382.5 3166.8 69.2 3618.5 39.46

28x28 (2R:4T) 
ELPA2 392 383.2 705.3 63.6 1152.1 17.40

20x20 (1R:8T) 
ELPA2 400 374.0 720.5 61.1 1155.6 16.9

14x14 (1R:8T) 
hybrid 392 159.9 741.8 84.8 986.5 8.27

20x20 (1R:8T) 
hybrid 800 96.9 652.1 58.9 807.9 12.49

MPI ranks / socket
OpenMP threads / rank

MPI grid
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Resources used 1000-atom design problem

43

Time: ~15 minutes / iteration, i.e. 3 hours for ~10 iterations

Footprint: ~400 hybrid nodes on Cray XC30 (SandyBride+K20X)

Scan ~13 materials in 3 hours or 5,000 in ~16 days 

(consider performance will improve 10-100x in by end of decade)
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Piz Dora (Piz Daint)

External Login Access (ELA)
CSCS

EPFL

AiiDA 
Server

/store

Repository 
access

Research 
Community

Traditional access 
(batch jobs)

Access through 
AiiDa

Scientific 
Community access

NCCR MARVEL: data science for materials design 
(EPFL / CSCS collaboration)

44
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Heterogenous Supercomputing Platform @ CSCS

45

“Piz Daint” with 28 cabinets Cray XC30 hybrid and 7 cabinets Cray XC40
Cray XC40 is hosting:

– “Monte Rosa” replacement in the User Lab 
– Replacement of pre- and post processing cluster of the user lab 
– Successor of “Schrödinger” cluster for U. of ZH 
– Cluster resources of U. of Lugano and PSI 
– BigData analytics Cluster for ETH Zurich 
– Cluster and data resource for NCCR project MARVEL (materials design)
Cray XC @ CSCS – a heterogeneous cloud-like environment for science (“Piz Daint" & “Piz Dora”) 
– hybrid CPU-CPU nodes (Piz Daint) 
– CPU only nodes (Piz Dora) 
– large memory nodes for data processing 
– SSD-based I/O burst buffers 
– very low latency network 
– high bisection bandwidth

But isn’t this expensive? 
– no, it is much cheaper or we wouldn’t 
   do it this way!

Take pressure off infrastructure at 
Universities and Labs, to facilitate 
consolidation of their institution-
wide computing infrastructure
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SIRIUS: Domain Specific Library

46

SIRIUS C++ library

Density class 
Distributed charge 
density and 
magnetization 
generation

MPI + OpenMP parallel model with GPU acceleration

LibXCGNU scientific 
library FFTW3 HDF5 ELPA MAGMA ScaLAPACK 

and PBLAS
LAPACK 

and BLAS

Exciting Elk

Potential class 
Distributed XC 
potential and magnetic 
field generation, 
distributed Poisson 
solver

Band class 
Second-variational and 
full diagonalization of the 
Hamiltonian with support 
of GPU and distributed 
eigenvalue solvers

Force class 
Atomic forces 
with support of 
distributed 
Hamiltonian 
matrix 

Spglib

other (e.g. QE)

Low-level LAPW (and PW) library that supports multiple codes

~30k lines of C++ code (incl. documentation) with F90 bindings

Anton Kozhevnikov 
with  

Claudia Draxl,  
Andris Gulans, 

and Georg Huhs
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The real problem is software 

48

T. SchulthesscrCLIM kick-off meeting,  ETH Zurich, Thursday, May 28, 2015

COSMO: current and new (HP2C developed) code

!19

main (current / Fortran)

physics 
(Fortran)

dynamics (Fortran)

MPI

system

main (new / Fortran)

physics 
(Fortran) 

with OpenMP / 
OpenACC

dynamics (C++)

MPI or whatever

system

Generic 
Comm. 
Library

boundary 
conditions & 
halo exchg.

stencil library

X86 GPU

Shared 
Infrastructure

T. SchulthesscrCLIM kick-off meeting,  ETH Zurich, Thursday, May 28, 2015
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Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering 

Physical model

Mathematical description

Algorithmic description

Schulthess, Nature Physics, May 2015
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Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering 

Physical model

Mathematical description

Algorithmic description

Schulthess, Nature Physics, May 2015
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Physical model

Mathematical description

Algorithmic description

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering 
Schulthess, Nature Physics, May 2015
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Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering 

Physical model

Mathematical description

H = −t
∑

⟨ij⟩,σ

c†iσcjσ + U
∑

i

ni↑ni↓

Algorithmic description
Gc({si, l}k+1) = Gc({si, l}0) + [a0|a1|...|ak] × [b0|b1|...|bk]t

Gc({si, l}k+1) = Gc({si, l}k) + ak × b
t
k

Schulthess, Nature Physics, May 2015
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Physical model

Algorithmic description

Compilation

Computer

Imperative code
lap(i,j,k) = –4.0 * data(i,j,k) +
    data(i+1,j,k) + data(i-1,j,k) + 
    data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering 

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v  + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ ·  (P l,f  +  F l,f) +  Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T ]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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lap(i,j,k) = –4.0 * data(i,j,k) +
    data(i+1,j,k) + data(i-1,j,k) + 
    data(i,j+1,k) + data(i,j-1,k);
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.
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Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v  + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ ·  (P l,f  +  F l,f) +  Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T ]−1
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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lap(i,j,k) = –4.0 * data(i,j,k) +
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    data(i,j+1,k) + data(i,j-1,k);
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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lap(i,j,k) = –4.0 * data(i,j,k) +
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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Compute / storage / networks /  
identity mgt / security
Data centres (incl. power/cooling)

Bare infrastructure

Infrastructure as a Service (IaaS)
Data & compute services
e.g. through web services

Platform as a Service (PaaS)
Databases, algorithmic motifs
e.g. map/reduce, PDE solvers

Software as a Service (SaaS)
Modelling, searches, simulations …
e.g. weather forecast, materials design

CSCS’ main business 
> federate infrastructure with other centres 
> collaborate with vendors on OpenStack, Docker, etc. 
> scalable / elastic compute and storage 
> networks and identity management

Collaborate with vendors, other centres, developer communities 
> develop HPC platform services 
> in-situ and interactive data analysis tools

Collaborate with and support user communities  
> in development of simulation / data analysis software 
> support simulation / data services

e.g. NCCR MARVEL, CHIPP, HBP, …e.g. Cray, Nvidia, Intel, …

e.g. JSC, CINECA, BSC, …

e.g. OLCF, TokyoTech, …
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