
T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Thomas C. Schulthess

1

Contemporary Supercomputing

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Supercomputers – the most performant, general
purpose HPC systems at any given time

2

Cray XC system – presently one of the best-selling supercomputing
platforms – was funded by the DARPA HPCS* program

(*) HPCS stand for “High Productivity Computing Systems”

Hardware developments were successful, but none of the HPCS’ high-
productivity languages (Chapel and X10) have been widely adopted

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 3

Does this mean performance is
important, but not productivity?

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Performance: floating point operations

4

www.top500.org www.green500.org

FLOP/s

FLOP/s/W

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

1000-fold performance improvement per decade

5

www.top500.org

1st app. at > 1 TFLOP/s sustained

1st app. at > 1 PFLOP/s sustained

http://www.top500.org

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

“Only” 100-fold improvement for climate codes

6

Source: Peter Bauer, ECMWF

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 7

Has efficiency of climate codes
dropped 10-fold every decade decade?

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Revisiting the FLOP/s and GFLOP/s/W metrics

8

Metric for time to solution in High-Performance LINPACK benchmark:

… and a metric for energy to solution of HPL:

(1) high arithmetic density increases with problem size:
of FLOP

of load-stores
/ O(N)

(2) thus, it is reasonable to measure work in number of retired floating point operations (),totFLOP

(1) normalised energy to solution by simple measure of work

(3) and to normalised the time to solution and performance accordingly

(2) minimising energy to solution is equivalent to maximising

FLOP/s and GFLOP/s/W are good metrics for HPL, but is this true for all motifs?

(3) ... and of course

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Peak performance is algorithm dependent

9

source: lorena a. barba group  
 (lorenabarba.com)

Peak performance varies with arithmetic density of algorithm / code / benchmark

Materials science / HPLClimate / HPCG

http://lorenabarba.com

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Generic performance metrics in HPC

10

Energy & Time

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Optimising Time and Energy to Solution

11

Energy to solution (ETS):
• energy is directly proportional to cost (energy = power x time)
• given all operational constraints, energy should be minimised

Time to solution (TTS):
• do we have to minimise time to solution?
• no, it just needs to be good enough to meet operational constrains

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Today’s (2015) production suite of Meteo Swiss

12

ECMWF
2x per day
16 km lateral grid, 91
layers

COSMO-7
3x per day 72h forecast
6.6 km lateral grid, 60 layers

COSMO-2
8x per day 24h forecast
2.2 km lateral grid, 60
layers

Some of the products generate from these simulations:
‣ Daily weather forecast on TV / radio
‣ Forecasting for air traffic control (Sky Guide)
‣ Safety management in event of nuclear incidents

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

“Albis” & “Lema”, CSCS production systems for Meteo Swiss

13

Cray XE6 procured in spring 2012 based on 12-core AMD Opteron multi-core processors

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Cloud resolving simulations

14

187 km

187 km

10 km

COSMO model setup: Δx=550 m, Δt=4 sec Plots generated using INSIGHT

Source: Wolfgang Langhans and Christoph Schär, Institute for Atmospheric and Climate Science, ETH Zurich

Cloud ice

Cloud liquid water

Rain

Accumulated surface
precipitation

Orographic convection – simulation: 11-18 local time, 11 July 2006 (Δt_plot=4 min)

Institute for Atmospheric and Climate Science Study at ETH Zürich (Prof. Schär) demonstrates cloud
resolving models converge at 1-2km resolution (at least for convective clouds over the alpine region)

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Improve resolution of Meteo Swiss model from 2 to 1 km

15

2x

2x

~2-3x

Time

Run on 4x the
number of
processors

Sequential

Doubling the
resolution requires
~10x performance

increase

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Prognostic uncertainty

16

The weather system is chaotic 
 à rapid growth of small perturbations (butterfly effect)

Prognostic timeframeStart

Ensemble method: compute distribution over many simulations

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Improving simulation quality requires higher
performance – what exactly and by how much?

17

Resource determining factors for Meteo Swiss’ simulations

COSMO-2: 24h forecast running in 30 min.  
 8x per day

COSMO-1: 24h forecast running in 30 min.  
 8x per day (~10x COSMO-2)

COSMO-2E: 21-member ensemble,120h forecast 
 in 150 min., 2x per day (~26x COSMO-2)

KENDA: 40-member ensemble,1h forecast 
 in 15 min., 24x per day (~5x COSMO-2)

Current model running through mid 2016 New model starting operation on in Jan. 2016

New production system must deliver
~40x the simulations performance 

of “Albis” and “Lema”

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 18

• New system need to be installed Q2/2015

• Assuming 2x improvement in per-socket performance: 
~20x more X86 sockets would require 30 Cray XC cabinets

Current Cray XC30/XC40 platform  
(space for 40 racks XC)

New system for Meteo Swiss if we
build it like the German Weather
Service (DWD) did theirs, or UK Met
Office, or ECMWF … (30 racks XC)

Albis & Lema: 3 cabinets Cray XE6 installed Q2/2012

Thinking inside the box is not a good option!
CSCS machine room

State of the art implementation  
of new system for Meteo Swiss

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 19

“Piz Daint,” a productive supercomputer with CPU-GPU nodes

• Cray XC30 with 5272 compute nodes, each with one 8-core Xeon CPU and one K20X GPU
• Fully populated dragonfly: global bandwidth per node matches injection bandwidth
• Developed with application performance in mind: CP2K, COSMO, SPECFEM, GROMACS, Q.E.
• Co-designed with CP2K and COSMO-OPCODE
• Final upgrade 10/2013; accepted 12/2013; early science 01-03/2014; full operation since 04/2014

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

COSMO-2 running on the GPUs of “Piz Daint”

20

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

COSMO: current and new (HP2C developed) code

21

main (current / Fortran)

physics
(Fortran)

dynamics (Fortran)

MPI

system

main (new / Fortran)

physics
(Fortran) 

with OpenMP /
OpenACC

dynamics (C++)

MPI or whatever

system

Generic
Comm.
Library

boundary
conditions &
halo exchg.

stencil library

X86 GPU

Shared
Infrastructure

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Speedup of COSMO-2 production problem – apples to apples
comparison with 33h forecast of Meteo Swiss

22

Monte Rosa
Cray XE6

(Nov. 2011)

Tödi
Cray XK7

(Nov. 2012)

Piz Daint
Cray XC30
(Nov. 2012)

Piz Daint
Cray XC30 hybrid (GPU)

(Nov. 2013)

1x

2x

3x

4x

Current production code

1x

2x

3x

4x

1.35x

1.77x

1.67x 3.36x

New HP2C funded code

1.4x

1.49x 2.5x

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Energy to solution (kWh / ensemble member)

23

Cray XE6
(Nov. 2011)

Cray XK7
(Nov. 2012)

Cray XC30
(Nov. 2012)

Cray XC30 hybrid (GPU)
(Nov. 2013)

6.0

4.5

3.0

1.5

Current production code

1.75x

New HP2C funded code

1.41x

1.49x

2.51x

2.64x

6.89x3.93x

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

30 cabinets

CSCS machine room
24

Piz Daint

20 cabinetsUsing the refactored code on conventional X86

12
cabinets

Using same implementation as on “Piz Daint”

6Modifying parts of the model to single precision

Further options: increase GPU density, use K40 or K80 …

Unconventional implementation
of new system for Meteo Swiss

2
The new Meteo Swiss system “Piz Kesh”

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 25

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 26

References and Collaborators
• Peter Messmer and his team at the NVIDIA co-design lab at ETH Zurich
• Teams at CSCS and Meteo Suisse
• O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming, M. Bianco, A. Arteaga, T. C. Schulthess,
“Towards a performance portable, architecture agnostic implementation strategy for
weather and climate models”, Supercomputing Frontiers and Innovations, vol. 1, no. 1 (2014),
see superfri.org

• G. Fourestey, B. Cumming, L. Gilly, and T. C. Schulthess, “First experience with validating and
using the Cray power management database tool”, Proceedings of the Cray Users Group 2014
(CUG14) (see arxiv.org for preprint)

• B. Cumming, G. Fourestey, T. Gysi, O. Fuhrer, M. Fatica, and T. C. Schulthess, “Application
centric energy-efficiency study of distributed multi-core and hybrid CPU-GPU systems”,
Proceedings of the International Conference on High-Performance Computing, Networking,
Storage and Analysis, SC’14, New York, NY, USA (2014). ACM

• T. Gysi, C. Osuna, O. Fuhrer, M. Bianco and T. C. Schulthess, “STELLA: A domain-specific tool
for structure grid methods in weather and climate models”, to be published in Proceedings of
the International Conference on High-Performance Computing, Networking, Storage and Analysis,
SC’15, New York, NY, USA (2015). ACM

http://superfri.org
http://arxiv.org

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 27

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Materials and human evolution

28

Stone age
Bronze age

Iron age
Nuclear age

Silicon age

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 29

Serendipitous discovery & Edisonian development
• Most new materials are discovered serendipitously (particularly true for complex materials)
• Or through very laborious searches, e.g.

• Edison tested 3000 materials for his filament and settled on burned sewing thread
• Haber-Bosh ammonia synthesis with osmium as a catalyst 
Mitasch (BASF) tested ~22,000 materials to find iron-based catalyst – still in use today

• Norskov showed in 2009 that CoMo is a more efficient & inexpensive catalyst

in Fig. 8d. A highly selective catalyst will have very low ethane
production, even at high conversion, where the amount of acetylene
in the reactants is small. Different NiZn catalysts were compared
with a model PdAg catalyst. Pure Pd has a reasonably good
selectivity, but the PdAg alloy shows a very high selectivity even
at high conversions. Nickel is considerably worse than palladium,
but as expected from Fig. 8b, adding increasing amounts of zinc
increases the selectivity substantially. The NiZn catalyst with the
highest zinc content had selectivity comparable to the best PdAg
catalyst that was tested.

The fact that it has been possible to tailor surfaces with improved
catalytic properties from theoretical insights and DFT calculations
provides some hope that this may develop into a more generally
versatile design strategy. There are, however, a number of
challenges ahead.

First, it should be realized that finding leads for new catalysts
is only one step towards a new technical catalyst. High catalytic
activity or selectivity and low constituent cost can be necessary
requirements for a new catalyst, but long-term stability, lack of
side-products, resistance to poisons, susceptibility to promoters and
cost of production are equally important factors. To some extent
these factors may also be simulated, but in the end, experimental
studies under realistic conditions will always be central to creating
technical catalysts.

An important extension of the notion of DFT-based catalyst
design is the use of DFT calculations in reactor design. The first
steps in this direction were taken for the ammonia synthesis
process in which it proved possible to link the atomic-scale
insight obtained by DFT calculations directly with the industrial
chemical engineering practice as illustrated in Fig. 9. In an
industrial ammonia synthesis reactor there are several catalyst
beds with cooling stages in between as illustrated in Fig. 9a. The
cooling stages are introduced so as to operate as close to the
maximum rate line (red in Fig. 9a) as possible. The important
notion is that the position of the maximum for the volcano curve
(Fig. 9b) is a strong function of the operating conditions. At
low ammonia concentrations (reactor inlet), Fe is the preferred
elemental catalyst, whereas at high ammonia concentrations
(reactor outlet), Ru is the preferred elemental catalyst. The
optimal catalyst curves (Fig. 9c) express the properties of the
optimal catalyst at given reaction conditions plotted with the
operating line. Thus, this illustrates the value(s) of the activity
descriptor(s) at the maximum of the volcano curve at the given
reaction conditions. The key concept is that the structure and
composition of the optimal catalyst is a function of the reaction
conditions, and as these vary throughout industrial reactors, it is
desirable to perform the computational screening as a function
of all possible reaction conditions. This might also, in a longer
perspective, be a way to identify radically new catalysts rather
than simply improving the performance of known catalysts.

�

����������

a

Temperature (°C)

350 450 550

%
 N

H
3

b

–150 –100 –50 0 50 100

103

102

101

100

10–1

10–2

10–3

10–4

10–5

10–6

TO
F

(s
–1

)

Relative nitrogen binding energy (kJ mol–1)

0.01%
 N

H 3

0.1%
 N

H 3

1%
 N

H 3

10
%

 N
H 3

Mo

Fe

Ru
Os

Co

Ni

450°C
100 bar
3:1 H2/N2

Temperature (°C) Temperature (°C)
300 350 400 450 500 550 300 350 400 450 500 550

40

30

20

10

0

Ptot = 80 bar, H2:N2 = 2:1 Ptot = 200 bar, H2:N2 = 3:1

 N
H

3 c
on

ce
nt

ra
tio

n
(%

) Optimal catalyst curve
EN*–EN*(Ru) = –10 kJ mol–1

–15 kJ mol–1

Optimal
operating line

Equilibrium
conversion

–15 kJ mol–1

–20 kJ mol–1

Operating
line

–100 –75 –50 –25 0 25 50 75
Relative nitrogen binding energy (kJ mol–1)

101

100

10–1

10–2

10–3

10–4

10–5

TO
F(

s–1
)

“CoMo” Ru
Os

Co

Ni
Mo

Fe

c d

uring the past century chemists have developed efficient
chemical reactions for converting fossil resources into a
broad range of fuels and chemicals, and this can be consid-

ered one of the most important and far-reaching scientific devel-
opments up to now. Today, essentially all transportation fuels are
refined in a number of catalytic processes and most chemicals are
also produced using technologies based on catalysis1. A few well-
known examples illustrate the impact: about half of all petrol in the
world is now produced by fluid catalytic cracking using specially
designed zeolite catalysts, and the Haber–Bosch process — featur-
ing an iron catalyst — continues to have a key role in the production
of fertilizers. The list of important small- and large-scale processes
by which fossil resources are converted into fuels and chemicals is
almost endless.

Such catalytic technologies have also resulted in various
environmental issues — even the best processes do not allow a
complete elimination of undesirable byproducts. Many innovative,
catalytic technologies have subsequently been implemented to
remedy these new problems; one famous example is the precious-
metal-based three-way catalyst installed in most petrol-fuelled
passenger cars. Moreover, these developments have contributed to
an increased use of fossil resources and thus to the increasing carbon
dioxide levels in the atmosphere. Currently, there is a significant
drive to relinquish our dependence on fossil fuels and to minimize
the emission of carbon dioxide. Clearly, this calls for many new and
improved catalytic processes, and for catalytic technologies that
focus on prevention rather than on remediation.

Reducing environmental impact will require entirely new
catalysts: catalysts for new processes, more active and more selective
catalysts and preferably catalysts that are made from earth-abundant
elements. This represents a formidable challenge and it will demand
an ability to design new catalytic materials well beyond our present
capabilities. The ultimate goal is to have enough knowledge of the
factors determining catalytic activity to be able to tailor catalysts
atom-by-atom. The catalytic properties of a material are in principle
determined completely by its electronic structure, so the objective
is the engineering of electronic structure by changing composition
and physical structure. The approach is illustrated in Fig. 1. Over
the past few decades our understanding of why particular materials
are good catalysts for given reactions has improved. The challenge

is to invert this problem; given that we need to catalyse a certain
reaction under a set of specified conditions, which material should
we choose?

The aim of controlling matter at the molecular scale by
engineering the electronic structure is not restricted to catalytic
materials; it is a general challenge in chemistry, physics and
materials science, and there is considerable progress in several
areas such as materials for batteries2, hydrogen storage3, optical
absorption4 and molecules for homogeneous catalysis5,6. Catalysis
at surfaces is particularly well suited for electronic structure
engineering, primarily because the link between the atomic-scale
properties and the macroscopic functionality — the kinetics — is
well developed. In addition, the theoretical description of surface
reactions has been enhanced considerably by the availability of a
large number of quantitative experimental surface-science studies
of adsorption and reaction phenomena7–12.

Here, we review some of the first examples of the computer-based
design of solid catalysts. We introduce a number of concepts linking
catalytic performance to the properties of the catalyst’s surface, and
in turn discuss how the surface electronic structure determines the
catalytic properties. Finally, we discuss some of the challenges ahead.

The extraordinary progress in density functional theory (DFT)
calculations for surface processes is the key development that has
created the possibility of computer-based catalyst design13. Current
methods are fast enough to allow the treatment of complex, extended
systems14,15. They can also now provide the interaction energies of
molecules and atoms with metal surfaces with sufficient accuracy to
describe trends in reactivity for transition metals and alloys16.

There are now several cases where the complete kinetics of a
catalytic reaction has been evaluated solely on the basis of DFT
calculations of reaction barriers, reaction energies and the associated
entropies17–20. Figure 2 shows the comparison between calculated
and measured rates for three different reactions and catalytic
surfaces. Overall, the agreement between DFT-based kinetic models
and experiment is surprisingly good, and they serve to illustrate the
accuracy and value of current density functional theory.

The agreement between theory and experiment is particularly
noteworthy in two cases for supported metal catalysts (ruthenium

Nicola Marzari

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 30

Systematic searches with high-throughput & capability runs

• There are ~150,000 known inorganic materials with published structures
• Very basic properties computed with DFT-based quantum simulations take ~10 minutes on a powerful
workstation (e.g. hybrid CPU-GPU)

• “Piz Daint” with 5272 hybrid CPU-GPU nodes could scan ~5000 structures / 10 minutes

But we want to study more complex, harder to compute properties – how complex?

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Approaching the problem form the other end

31

Start with the most reliable (and expensive) approach to electronic structure …

… and the largest problem that is reasonable* for materials searches …

… and bet on future improvements in extreme-scale computing

Linearised Augmented Plane Wave Method (LAPW)

~1000 atoms in a unit cell – the “1000-atom problem” **

novel architectures and exa-scale computing

(**) proposed by Claudia Draxl at a PRACE project meeting in spring 2011
(*) Using W. Kohn’s arguments on nearsightedness of electronic matter

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Solving the Kohn-Sham Equations is the bottleneck in most
DFT-based materials science codes

32

⇥i(⇤r) =
X

µ

ciµ�µ(⇤r)Ansatz

Hµ� =

Z
�⇤
µ(⇥r)

✓
� ~2
2m

r2 + vLDA(⇥r)

◆
��(⇥r)d⇥rHermitian matrix

Sµ� =

Z
�⇤
µ(⇥r)��(⇥r)d⇥rBasis is not orthogonal

(H� "iS) = 0Solve generalized eigenvalue problem
where we are usually interested in about 10-50% of spectrum

✓
� ~2
2m

r2 + vLDA(⇤r)

◆
⇥i(⇤r) = �i⇥i(⇤r)Kohn-Sham Eqn.

n(�) =
NX

i=1

⇥⇤
i (�)⇥i(�)

We need eigenvectors as well, to compute the density:

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Generalised eigenvalue problem in the LAPW

33

X

G0

Hk
GG0Cik

G0 = ✏ik
X

G0

Ok
GG0Cik

G0

Ok
GG0 = h'G+k|'G0+kiOverlap:

Hk
GG0 = h'G+k|Ĥ|'G0+kiHamiltonian:

LAPW basis:

'G+k(r) =

8
>>><

>>>:

X

L

O↵

X̀

⌫=1

Ak
↵L⌫(G)u↵

`⌫(r)YL(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

9
>>>=

>>>;

MT↵

I

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

'G+k(r) =

8
>>><

>>>:

X

L

O↵

X̀

⌫=1

Ak
↵L⌫(G)u↵

`⌫(r)YL(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

9
>>>=

>>>;

Generalised eigenvalue problem in the LAPW
(cont.)

34

X

G0

Hk
GG0Cik

G0 = ✏ik
X

G0

Ok
GG0Cik

G0

Ok
GG0 = h'G+k|'G0+kiOverlap:

Hk
GG0 = h'G+k|Ĥ|'G0+kiHamiltonian:

LAPW basis:

=
X

↵L⌫

Ak⇤
↵L⌫(G)Ak

↵L⌫(G
0) +⇥(G�G0)

=
X

↵L⌫

Ak⇤
↵L⌫(G)Bk

↵L⌫(G
0) +

1

2
(G+ k)(G0 + k)⇥(G�G0) + Ṽs(G�G0)

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Generalised eigenvalue problem in the LAPW
(cont.)

35

X

G0

Hk
GG0Cik

G0 = ✏ik
X

G0

Ok
GG0Cik

G0

Ok
GG0 = h'G+k|'G0+kiOverlap:

Hk
GG0 = h'G+k|Ĥ|'G0+kiHamiltonian:

=
X

↵L⌫

Ak⇤
↵L⌫(G)Ak

↵L⌫(G
0) +⇥(G�G0)

=
X

↵L⌫

Ak⇤
↵L⌫(G)Bk

↵L⌫(G
0) +

1

2
(G+ k)(G0 + k)⇥(G�G0) + Ṽs(G�G0)

Bk
↵L⌫(G) =

X

L3L2⌫2

Ak
↵L2⌫2

(G)h↵l⌫
L3l2⌫2

hYL|RL3 |YL2i+
1

2

X

⌫2

Ak
↵L⌫2

u↵
l⌫(R↵)u

0↵
l⌫2

(R↵)R
2
↵

complexityO(N3)

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Each MPI rank gets a panel of tilesInitial data is distributed
in a block-cyclic fashion

The slices of whole vectors are
gathered on each MPI rank

MPI ranks of each column swop
blocks of panels

M
PI

 c
om

m
un

ic
at

io
n

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

Fig. 1. (color online) ‘Panel’ and ‘slice’ storage of the data. For parallel linear algebra operations array has to be distributed in a block-cyclic fashion over a 2D
grid of MPI ranks. In order to perform a local operation on a whole vector, the slices of vectors are gathered from panels or created locally on the corresponding
row ranks of the MPI grid. To perform a distributed operation with PBLAS or ScaLAPACK the vectors are shuffled to the ’panel’ storage.

Thus the LAPW basis functions are given by:

'G+k(r) =

8
>>><

>>>:

X

L

O↵

`X

⌫=1

Ak
↵L⌫(G)u↵

`⌫(r)YL(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

(5)

wehe L ⌘ {`,m} denotes the angular momentum and az-
imuthal quantum numbers and

P
L ⌘

P`
max

`=0

P`
m=�`. The

matching coefficients Ak
↵L⌫(G) are chosen to ensure continu-

ity of the basis functions (and if possible of their derivatives)
on the boundaries of the sphere ↵. The overlap matrix is given
by:

Ok
GG0 = h'G+k|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Ak

↵L⌫(G
0) + ⇥(G � G0), (6)

where ⇥(G) is Fourier transform of the unit step function1.

For an efficient high-performance implementation of the
methods it is important to notice that the contribution of the
overlap matrix inside the spherical regions is nothing but a
multiplication of two matching coefficient arrays with the
summation over a composite index {↵, L, ⌫}. Similarly, the
Hamiltonian matrix can be written in a form that involves
matrix-matrix multiplications:

Hk
GG0 = h'G+k|Ĥ|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Bk

↵L⌫(G
0)

+
1

2
(G + k)(G0 + k)⇥(G � G0) + Ṽs(G � G0) (7)

where Ṽs(G) is Fourier transform of the effective Kohn-
Sham potential multiplied by the unit step function and array
Bk

↵L⌫(G) can be considered as a result of application of
the muffin-tin Hamiltonian

P
L h↵

L(r)RL(r̂) to the array of

1unit step function ⇥(r) is defined to be 0 in the muffin-tin region and 1
in the interstitial

matching coefficients:

Bk
↵L⌫(G) =

X

L3
L2⌫2

Ak
↵L2⌫2

(G)h↵`⌫
L3`2⌫2

hYL|RL3 |YL2i

+
1

2

X

⌫2

Ak
↵L⌫2

(G)u↵
`⌫(R↵)u0↵

`⌫2
(R↵)R2

↵ (8)

The second part of Eq. (8) is a surface contribution to kinetic
energy2 and

h↵`⌫
L3`2⌫2

=

Z R↵

MT

0

u↵
`⌫(r)h

↵
L3

(r)u↵
`2⌫2

(r)r2dr (9)

hYL|RL3 |YL2i =

ZZ
Y ⇤
L (✓,�)RL3(✓,�)YL2(✓,�) sin ✓d�d✓

(10)
are, respectively, the radial Hamiltonian integrals and complex
Gaunt coefficients.

For ⇠1000 atom problems the resulting generalized eigen-
value problem must be solved for a dense, complex Hermitian
matrix with dimension of order 105. Since in a materials design
problem these simulations will have to run abundantly on large
parallel supercomputers that cannot hold these matrices on
individual nodes, the implementation must be designed for
distributed memory architectures. Thus the underlying arrays
have to be partitioned in such a way that the above construction
can be executed with minimum communication and results in
Hamiltonian and overlap matrices that have the desired block-
cyclic data distribution of the distributed eigensolver.

Thus, the matrix multiplies in equations (6) and (7) imply
a block-cyclic distribution for the array Ak

↵L⌫(G) of matching
coefficients, where G-vector and composite {↵, L, ⌫} indices
are distributed over, respectively, the columns and rows of a
2D MPI grid. This distribution, however, is very inefficient for
the computation of the auxiliary array Bk

↵L⌫(G) (Eq. 8), the
reason being, that in order to compute a local panel of B-
coefficients the sum over {L2, ⌫2} indices is needed which
may run out of scope of the current MPI rank. This is a
well known problem when for some operations (e.g. FFT used

2surface contribution to kinetic energy can be derived form the Green’s

identity
R
S

f(rg)d~S =
R
V

⇣
f(r2g) + (rf)(rg)

⌘
dV

Generalised eigenvalue problem in the LAPW
(cont.)

36

X

G0

Hk
GG0Cik

G0 = ✏ik
X

G0

Ok
GG0Cik

G0

Ok
GG0 = h'G+k|'G0+kiOverlap:

Hk
GG0 = h'G+k|Ĥ|'G0+kiHamiltonian:

=
X

↵L⌫

Ak⇤
↵L⌫(G)Ak

↵L⌫(G
0) +⇥(G�G0)

=
X

↵L⌫

Ak⇤
↵L⌫(G)Bk

↵L⌫(G
0) +

1

2
(G+ k)(G0 + k)⇥(G�G0) + Ṽs(G�G0)

Bk
↵L⌫(G) =

X

L3L2⌫2

Ak
↵L2⌫2

(G)h↵l⌫
L3l2⌫2

hYL|RL3 |YL2i+
1

2

X

⌫2

Ak
↵L⌫2

u↵
l⌫(R↵)u

0↵
l⌫2

(R↵)R
2
↵

Each MPI rank gets a panel of tilesInitial data is distributed
in a block-cyclic fashion

The slices of whole vectors are
gathered on each MPI rank

MPI ranks of each column swop
blocks of panels

M
P

I c
om

m
un

ic
at

io
n

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

Fig. 1. (color online) ‘Panel’ and ‘slice’ storage of the data. For parallel linear algebra operations array has to be distributed in a block-cyclic fashion over a 2D
grid of MPI ranks. In order to perform a local operation on a whole vector, the slices of vectors are gathered from panels or created locally on the corresponding
row ranks of the MPI grid. To perform a distributed operation with PBLAS or ScaLAPACK the vectors are shuffled to the ’panel’ storage.

Thus the LAPW basis functions are given by:

'G+k(r) =

8
>>><

>>>:

X

L

O↵

`X

⌫=1

Ak
↵L⌫(G)u↵

`⌫(r)YL(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

(5)

wehe L ⌘ {`,m} denotes the angular momentum and az-
imuthal quantum numbers and

P
L ⌘

P`
max

`=0

P`
m=�`. The

matching coefficients Ak
↵L⌫(G) are chosen to ensure continu-

ity of the basis functions (and if possible of their derivatives)
on the boundaries of the sphere ↵. The overlap matrix is given
by:

Ok
GG0 = h'G+k|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Ak

↵L⌫(G
0) + ⇥(G � G0), (6)

where ⇥(G) is Fourier transform of the unit step function1.

For an efficient high-performance implementation of the
methods it is important to notice that the contribution of the
overlap matrix inside the spherical regions is nothing but a
multiplication of two matching coefficient arrays with the
summation over a composite index {↵, L, ⌫}. Similarly, the
Hamiltonian matrix can be written in a form that involves
matrix-matrix multiplications:

Hk
GG0 = h'G+k|Ĥ|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Bk

↵L⌫(G
0)

+
1

2
(G + k)(G0 + k)⇥(G � G0) + Ṽs(G � G0) (7)

where Ṽs(G) is Fourier transform of the effective Kohn-
Sham potential multiplied by the unit step function and array
Bk

↵L⌫(G) can be considered as a result of application of
the muffin-tin Hamiltonian

P
L h↵

L(r)RL(r̂) to the array of

1unit step function ⇥(r) is defined to be 0 in the muffin-tin region and 1
in the interstitial

matching coefficients:

Bk
↵L⌫(G) =

X

L3
L2⌫2

Ak
↵L2⌫2

(G)h↵`⌫
L3`2⌫2

hYL|RL3 |YL2i

+
1

2

X

⌫2

Ak
↵L⌫2

(G)u↵
`⌫(R↵)u0↵

`⌫2
(R↵)R2

↵ (8)

The second part of Eq. (8) is a surface contribution to kinetic
energy2 and

h↵`⌫
L3`2⌫2

=

Z R↵

MT

0

u↵
`⌫(r)h

↵
L3

(r)u↵
`2⌫2

(r)r2dr (9)

hYL|RL3 |YL2i =

ZZ
Y ⇤
L (✓,�)RL3(✓,�)YL2(✓,�) sin ✓d�d✓

(10)
are, respectively, the radial Hamiltonian integrals and complex
Gaunt coefficients.

For ⇠1000 atom problems the resulting generalized eigen-
value problem must be solved for a dense, complex Hermitian
matrix with dimension of order 105. Since in a materials design
problem these simulations will have to run abundantly on large
parallel supercomputers that cannot hold these matrices on
individual nodes, the implementation must be designed for
distributed memory architectures. Thus the underlying arrays
have to be partitioned in such a way that the above construction
can be executed with minimum communication and results in
Hamiltonian and overlap matrices that have the desired block-
cyclic data distribution of the distributed eigensolver.

Thus, the matrix multiplies in equations (6) and (7) imply
a block-cyclic distribution for the array Ak

↵L⌫(G) of matching
coefficients, where G-vector and composite {↵, L, ⌫} indices
are distributed over, respectively, the columns and rows of a
2D MPI grid. This distribution, however, is very inefficient for
the computation of the auxiliary array Bk

↵L⌫(G) (Eq. 8), the
reason being, that in order to compute a local panel of B-
coefficients the sum over {L2, ⌫2} indices is needed which
may run out of scope of the current MPI rank. This is a
well known problem when for some operations (e.g. FFT used

2surface contribution to kinetic energy can be derived form the Green’s

identity
R
S

f(rg)d~S =
R
V

⇣
f(r2g) + (rf)(rg)

⌘
dV

ı(G)

ı(↵L⌫)

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Each MPI rank gets a panel of tilesInitial data is distributed
in a block-cyclic fashion

The slices of whole vectors are
gathered on each MPI rank

MPI ranks of each column swop
blocks of panels

M
PI

 c
om

m
un

ic
at

io
n

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

Fig. 1. (color online) ‘Panel’ and ‘slice’ storage of the data. For parallel linear algebra operations array has to be distributed in a block-cyclic fashion over a 2D
grid of MPI ranks. In order to perform a local operation on a whole vector, the slices of vectors are gathered from panels or created locally on the corresponding
row ranks of the MPI grid. To perform a distributed operation with PBLAS or ScaLAPACK the vectors are shuffled to the ’panel’ storage.

Thus the LAPW basis functions are given by:

'G+k(r) =

8
>>><

>>>:

X

L

O↵

`X

⌫=1

Ak
↵L⌫(G)u↵

`⌫(r)YL(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

(5)

wehe L ⌘ {`,m} denotes the angular momentum and az-
imuthal quantum numbers and

P
L ⌘

P`
max

`=0

P`
m=�`. The

matching coefficients Ak
↵L⌫(G) are chosen to ensure continu-

ity of the basis functions (and if possible of their derivatives)
on the boundaries of the sphere ↵. The overlap matrix is given
by:

Ok
GG0 = h'G+k|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Ak

↵L⌫(G
0) + ⇥(G � G0), (6)

where ⇥(G) is Fourier transform of the unit step function1.

For an efficient high-performance implementation of the
methods it is important to notice that the contribution of the
overlap matrix inside the spherical regions is nothing but a
multiplication of two matching coefficient arrays with the
summation over a composite index {↵, L, ⌫}. Similarly, the
Hamiltonian matrix can be written in a form that involves
matrix-matrix multiplications:

Hk
GG0 = h'G+k|Ĥ|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Bk

↵L⌫(G
0)

+
1

2
(G + k)(G0 + k)⇥(G � G0) + Ṽs(G � G0) (7)

where Ṽs(G) is Fourier transform of the effective Kohn-
Sham potential multiplied by the unit step function and array
Bk

↵L⌫(G) can be considered as a result of application of
the muffin-tin Hamiltonian

P
L h↵

L(r)RL(r̂) to the array of

1unit step function ⇥(r) is defined to be 0 in the muffin-tin region and 1
in the interstitial

matching coefficients:

Bk
↵L⌫(G) =

X

L3
L2⌫2

Ak
↵L2⌫2

(G)h↵`⌫
L3`2⌫2

hYL|RL3 |YL2i

+
1

2

X

⌫2

Ak
↵L⌫2

(G)u↵
`⌫(R↵)u0↵

`⌫2
(R↵)R2

↵ (8)

The second part of Eq. (8) is a surface contribution to kinetic
energy2 and

h↵`⌫
L3`2⌫2

=

Z R↵

MT

0

u↵
`⌫(r)h

↵
L3

(r)u↵
`2⌫2

(r)r2dr (9)

hYL|RL3 |YL2i =

ZZ
Y ⇤
L (✓,�)RL3(✓,�)YL2(✓,�) sin ✓d�d✓

(10)
are, respectively, the radial Hamiltonian integrals and complex
Gaunt coefficients.

For ⇠1000 atom problems the resulting generalized eigen-
value problem must be solved for a dense, complex Hermitian
matrix with dimension of order 105. Since in a materials design
problem these simulations will have to run abundantly on large
parallel supercomputers that cannot hold these matrices on
individual nodes, the implementation must be designed for
distributed memory architectures. Thus the underlying arrays
have to be partitioned in such a way that the above construction
can be executed with minimum communication and results in
Hamiltonian and overlap matrices that have the desired block-
cyclic data distribution of the distributed eigensolver.

Thus, the matrix multiplies in equations (6) and (7) imply
a block-cyclic distribution for the array Ak

↵L⌫(G) of matching
coefficients, where G-vector and composite {↵, L, ⌫} indices
are distributed over, respectively, the columns and rows of a
2D MPI grid. This distribution, however, is very inefficient for
the computation of the auxiliary array Bk

↵L⌫(G) (Eq. 8), the
reason being, that in order to compute a local panel of B-
coefficients the sum over {L2, ⌫2} indices is needed which
may run out of scope of the current MPI rank. This is a
well known problem when for some operations (e.g. FFT used

2surface contribution to kinetic energy can be derived form the Green’s

identity
R
S

f(rg)d~S =
R
V

⇣
f(r2g) + (rf)(rg)

⌘
dV

Generalised eigenvalue problem in the LAPW
(cont.)

37

X

G0

Hk
GG0Cik

G0 = ✏ik
X

G0

Ok
GG0Cik

G0

Ok
GG0 = h'G+k|'G0+kiOverlap:

Hk
GG0 = h'G+k|Ĥ|'G0+kiHamiltonian:

=
X

↵L⌫

Ak⇤
↵L⌫(G)Ak

↵L⌫(G
0) +⇥(G�G0)

=
X

↵L⌫

Ak⇤
↵L⌫(G)Bk

↵L⌫(G
0) +

1

2
(G+ k)(G0 + k)⇥(G�G0) + Ṽs(G�G0)

Each MPI rank gets a panel of tilesInitial data is distributed
in a block-cyclic fashion

The slices of whole vectors are
gathered on each MPI rank

MPI ranks of each column swop
blocks of panels

M
P

I c
om

m
un

ic
at

io
n

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

Fig. 1. (color online) ‘Panel’ and ‘slice’ storage of the data. For parallel linear algebra operations array has to be distributed in a block-cyclic fashion over a 2D
grid of MPI ranks. In order to perform a local operation on a whole vector, the slices of vectors are gathered from panels or created locally on the corresponding
row ranks of the MPI grid. To perform a distributed operation with PBLAS or ScaLAPACK the vectors are shuffled to the ’panel’ storage.

Thus the LAPW basis functions are given by:

'G+k(r) =

8
>>><

>>>:

X

L

O↵

`X

⌫=1

Ak
↵L⌫(G)u↵

`⌫(r)YL(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

(5)

wehe L ⌘ {`,m} denotes the angular momentum and az-
imuthal quantum numbers and

P
L ⌘

P`
max

`=0

P`
m=�`. The

matching coefficients Ak
↵L⌫(G) are chosen to ensure continu-

ity of the basis functions (and if possible of their derivatives)
on the boundaries of the sphere ↵. The overlap matrix is given
by:

Ok
GG0 = h'G+k|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Ak

↵L⌫(G
0) + ⇥(G � G0), (6)

where ⇥(G) is Fourier transform of the unit step function1.

For an efficient high-performance implementation of the
methods it is important to notice that the contribution of the
overlap matrix inside the spherical regions is nothing but a
multiplication of two matching coefficient arrays with the
summation over a composite index {↵, L, ⌫}. Similarly, the
Hamiltonian matrix can be written in a form that involves
matrix-matrix multiplications:

Hk
GG0 = h'G+k|Ĥ|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Bk

↵L⌫(G
0)

+
1

2
(G + k)(G0 + k)⇥(G � G0) + Ṽs(G � G0) (7)

where Ṽs(G) is Fourier transform of the effective Kohn-
Sham potential multiplied by the unit step function and array
Bk

↵L⌫(G) can be considered as a result of application of
the muffin-tin Hamiltonian

P
L h↵

L(r)RL(r̂) to the array of

1unit step function ⇥(r) is defined to be 0 in the muffin-tin region and 1
in the interstitial

matching coefficients:

Bk
↵L⌫(G) =

X

L3
L2⌫2

Ak
↵L2⌫2

(G)h↵`⌫
L3`2⌫2

hYL|RL3 |YL2i

+
1

2

X

⌫2

Ak
↵L⌫2

(G)u↵
`⌫(R↵)u0↵

`⌫2
(R↵)R2

↵ (8)

The second part of Eq. (8) is a surface contribution to kinetic
energy2 and

h↵`⌫
L3`2⌫2

=

Z R↵

MT

0

u↵
`⌫(r)h

↵
L3

(r)u↵
`2⌫2

(r)r2dr (9)

hYL|RL3 |YL2i =

ZZ
Y ⇤
L (✓,�)RL3(✓,�)YL2(✓,�) sin ✓d�d✓

(10)
are, respectively, the radial Hamiltonian integrals and complex
Gaunt coefficients.

For ⇠1000 atom problems the resulting generalized eigen-
value problem must be solved for a dense, complex Hermitian
matrix with dimension of order 105. Since in a materials design
problem these simulations will have to run abundantly on large
parallel supercomputers that cannot hold these matrices on
individual nodes, the implementation must be designed for
distributed memory architectures. Thus the underlying arrays
have to be partitioned in such a way that the above construction
can be executed with minimum communication and results in
Hamiltonian and overlap matrices that have the desired block-
cyclic data distribution of the distributed eigensolver.

Thus, the matrix multiplies in equations (6) and (7) imply
a block-cyclic distribution for the array Ak

↵L⌫(G) of matching
coefficients, where G-vector and composite {↵, L, ⌫} indices
are distributed over, respectively, the columns and rows of a
2D MPI grid. This distribution, however, is very inefficient for
the computation of the auxiliary array Bk

↵L⌫(G) (Eq. 8), the
reason being, that in order to compute a local panel of B-
coefficients the sum over {L2, ⌫2} indices is needed which
may run out of scope of the current MPI rank. This is a
well known problem when for some operations (e.g. FFT used

2surface contribution to kinetic energy can be derived form the Green’s

identity
R
S

f(rg)d~S =
R
V

⇣
f(r2g) + (rf)(rg)

⌘
dV

ı(G)

ı(↵L⌫)

Each MPI rank gets a panel of tilesInitial data is distributed
in a block-cyclic fashion

The slices of whole vectors are
gathered on each MPI rank

MPI ranks of each column swop
blocks of panels

M
P

I c
om

m
un

ic
at

io
n

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

Fig. 1. (color online) ‘Panel’ and ‘slice’ storage of the data. For parallel linear algebra operations array has to be distributed in a block-cyclic fashion over a 2D
grid of MPI ranks. In order to perform a local operation on a whole vector, the slices of vectors are gathered from panels or created locally on the corresponding
row ranks of the MPI grid. To perform a distributed operation with PBLAS or ScaLAPACK the vectors are shuffled to the ’panel’ storage.

Thus the LAPW basis functions are given by:

'G+k(r) =

8
>>><

>>>:

X

L

O↵

`X

⌫=1

Ak
↵L⌫(G)u↵

`⌫(r)YL(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

(5)

wehe L ⌘ {`,m} denotes the angular momentum and az-
imuthal quantum numbers and

P
L ⌘

P`
max

`=0

P`
m=�`. The

matching coefficients Ak
↵L⌫(G) are chosen to ensure continu-

ity of the basis functions (and if possible of their derivatives)
on the boundaries of the sphere ↵. The overlap matrix is given
by:

Ok
GG0 = h'G+k|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Ak

↵L⌫(G
0) + ⇥(G � G0), (6)

where ⇥(G) is Fourier transform of the unit step function1.

For an efficient high-performance implementation of the
methods it is important to notice that the contribution of the
overlap matrix inside the spherical regions is nothing but a
multiplication of two matching coefficient arrays with the
summation over a composite index {↵, L, ⌫}. Similarly, the
Hamiltonian matrix can be written in a form that involves
matrix-matrix multiplications:

Hk
GG0 = h'G+k|Ĥ|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Bk

↵L⌫(G
0)

+
1

2
(G + k)(G0 + k)⇥(G � G0) + Ṽs(G � G0) (7)

where Ṽs(G) is Fourier transform of the effective Kohn-
Sham potential multiplied by the unit step function and array
Bk

↵L⌫(G) can be considered as a result of application of
the muffin-tin Hamiltonian

P
L h↵

L(r)RL(r̂) to the array of

1unit step function ⇥(r) is defined to be 0 in the muffin-tin region and 1
in the interstitial

matching coefficients:

Bk
↵L⌫(G) =

X

L3
L2⌫2

Ak
↵L2⌫2

(G)h↵`⌫
L3`2⌫2

hYL|RL3 |YL2i

+
1

2

X

⌫2

Ak
↵L⌫2

(G)u↵
`⌫(R↵)u0↵

`⌫2
(R↵)R2

↵ (8)

The second part of Eq. (8) is a surface contribution to kinetic
energy2 and

h↵`⌫
L3`2⌫2

=

Z R↵

MT

0

u↵
`⌫(r)h

↵
L3

(r)u↵
`2⌫2

(r)r2dr (9)

hYL|RL3 |YL2i =

ZZ
Y ⇤
L (✓,�)RL3(✓,�)YL2(✓,�) sin ✓d�d✓

(10)
are, respectively, the radial Hamiltonian integrals and complex
Gaunt coefficients.

For ⇠1000 atom problems the resulting generalized eigen-
value problem must be solved for a dense, complex Hermitian
matrix with dimension of order 105. Since in a materials design
problem these simulations will have to run abundantly on large
parallel supercomputers that cannot hold these matrices on
individual nodes, the implementation must be designed for
distributed memory architectures. Thus the underlying arrays
have to be partitioned in such a way that the above construction
can be executed with minimum communication and results in
Hamiltonian and overlap matrices that have the desired block-
cyclic data distribution of the distributed eigensolver.

Thus, the matrix multiplies in equations (6) and (7) imply
a block-cyclic distribution for the array Ak

↵L⌫(G) of matching
coefficients, where G-vector and composite {↵, L, ⌫} indices
are distributed over, respectively, the columns and rows of a
2D MPI grid. This distribution, however, is very inefficient for
the computation of the auxiliary array Bk

↵L⌫(G) (Eq. 8), the
reason being, that in order to compute a local panel of B-
coefficients the sum over {L2, ⌫2} indices is needed which
may run out of scope of the current MPI rank. This is a
well known problem when for some operations (e.g. FFT used

2surface contribution to kinetic energy can be derived form the Green’s

identity
R
S

f(rg)d~S =
R
V

⇣
f(r2g) + (rf)(rg)

⌘
dV

Each MPI rank gets a panel of tilesInitial data is distributed
in a block-cyclic fashion

The slices of whole vectors are
gathered on each MPI rank

MPI ranks of each column swop
blocks of panels

M
PI

 c
om

m
un

ic
at

io
n

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

Fig. 1. (color online) ‘Panel’ and ‘slice’ storage of the data. For parallel linear algebra operations array has to be distributed in a block-cyclic fashion over a 2D
grid of MPI ranks. In order to perform a local operation on a whole vector, the slices of vectors are gathered from panels or created locally on the corresponding
row ranks of the MPI grid. To perform a distributed operation with PBLAS or ScaLAPACK the vectors are shuffled to the ’panel’ storage.

Thus the LAPW basis functions are given by:

'G+k(r) =

8
>>><

>>>:

X

L

O↵

`X

⌫=1

Ak
↵L⌫(G)u↵

`⌫(r)YL(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

(5)

wehe L ⌘ {`,m} denotes the angular momentum and az-
imuthal quantum numbers and

P
L ⌘

P`
max

`=0

P`
m=�`. The

matching coefficients Ak
↵L⌫(G) are chosen to ensure continu-

ity of the basis functions (and if possible of their derivatives)
on the boundaries of the sphere ↵. The overlap matrix is given
by:

Ok
GG0 = h'G+k|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Ak

↵L⌫(G
0) + ⇥(G � G0), (6)

where ⇥(G) is Fourier transform of the unit step function1.

For an efficient high-performance implementation of the
methods it is important to notice that the contribution of the
overlap matrix inside the spherical regions is nothing but a
multiplication of two matching coefficient arrays with the
summation over a composite index {↵, L, ⌫}. Similarly, the
Hamiltonian matrix can be written in a form that involves
matrix-matrix multiplications:

Hk
GG0 = h'G+k|Ĥ|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Bk

↵L⌫(G
0)

+
1

2
(G + k)(G0 + k)⇥(G � G0) + Ṽs(G � G0) (7)

where Ṽs(G) is Fourier transform of the effective Kohn-
Sham potential multiplied by the unit step function and array
Bk

↵L⌫(G) can be considered as a result of application of
the muffin-tin Hamiltonian

P
L h↵

L(r)RL(r̂) to the array of

1unit step function ⇥(r) is defined to be 0 in the muffin-tin region and 1
in the interstitial

matching coefficients:

Bk
↵L⌫(G) =

X

L3
L2⌫2

Ak
↵L2⌫2

(G)h↵`⌫
L3`2⌫2

hYL|RL3 |YL2i

+
1

2

X

⌫2

Ak
↵L⌫2

(G)u↵
`⌫(R↵)u0↵

`⌫2
(R↵)R2

↵ (8)

The second part of Eq. (8) is a surface contribution to kinetic
energy2 and

h↵`⌫
L3`2⌫2

=

Z R↵

MT

0

u↵
`⌫(r)h

↵
L3

(r)u↵
`2⌫2

(r)r2dr (9)

hYL|RL3 |YL2i =

ZZ
Y ⇤
L (✓,�)RL3(✓,�)YL2(✓,�) sin ✓d�d✓

(10)
are, respectively, the radial Hamiltonian integrals and complex
Gaunt coefficients.

For ⇠1000 atom problems the resulting generalized eigen-
value problem must be solved for a dense, complex Hermitian
matrix with dimension of order 105. Since in a materials design
problem these simulations will have to run abundantly on large
parallel supercomputers that cannot hold these matrices on
individual nodes, the implementation must be designed for
distributed memory architectures. Thus the underlying arrays
have to be partitioned in such a way that the above construction
can be executed with minimum communication and results in
Hamiltonian and overlap matrices that have the desired block-
cyclic data distribution of the distributed eigensolver.

Thus, the matrix multiplies in equations (6) and (7) imply
a block-cyclic distribution for the array Ak

↵L⌫(G) of matching
coefficients, where G-vector and composite {↵, L, ⌫} indices
are distributed over, respectively, the columns and rows of a
2D MPI grid. This distribution, however, is very inefficient for
the computation of the auxiliary array Bk

↵L⌫(G) (Eq. 8), the
reason being, that in order to compute a local panel of B-
coefficients the sum over {L2, ⌫2} indices is needed which
may run out of scope of the current MPI rank. This is a
well known problem when for some operations (e.g. FFT used

2surface contribution to kinetic energy can be derived form the Green’s

identity
R
S

f(rg)d~S =
R
V

⇣
f(r2g) + (rf)(rg)

⌘
dV

Each MPI rank gets a panel of tilesInitial data is distributed
in a block-cyclic fashion

The slices of whole vectors are
gathered on each MPI rank

MPI ranks of each column swop
blocks of panels

M
PI

 c
om

m
un

ic
at

io
n

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

[0, 0]

[1, 0]

[0, 1]

[1, 1]

Fig. 1. (color online) ‘Panel’ and ‘slice’ storage of the data. For parallel linear algebra operations array has to be distributed in a block-cyclic fashion over a 2D
grid of MPI ranks. In order to perform a local operation on a whole vector, the slices of vectors are gathered from panels or created locally on the corresponding
row ranks of the MPI grid. To perform a distributed operation with PBLAS or ScaLAPACK the vectors are shuffled to the ’panel’ storage.

Thus the LAPW basis functions are given by:

'G+k(r) =

8
>>><

>>>:

X

L

O↵

`X

⌫=1

Ak
↵L⌫(G)u↵

`⌫(r)YL(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

(5)

wehe L ⌘ {`,m} denotes the angular momentum and az-
imuthal quantum numbers and

P
L ⌘

P`
max

`=0

P`
m=�`. The

matching coefficients Ak
↵L⌫(G) are chosen to ensure continu-

ity of the basis functions (and if possible of their derivatives)
on the boundaries of the sphere ↵. The overlap matrix is given
by:

Ok
GG0 = h'G+k|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Ak

↵L⌫(G
0) + ⇥(G � G0), (6)

where ⇥(G) is Fourier transform of the unit step function1.

For an efficient high-performance implementation of the
methods it is important to notice that the contribution of the
overlap matrix inside the spherical regions is nothing but a
multiplication of two matching coefficient arrays with the
summation over a composite index {↵, L, ⌫}. Similarly, the
Hamiltonian matrix can be written in a form that involves
matrix-matrix multiplications:

Hk
GG0 = h'G+k|Ĥ|'G0+ki

=
X

↵L⌫

Ak⇤
↵L⌫(G)Bk

↵L⌫(G
0)

+
1

2
(G + k)(G0 + k)⇥(G � G0) + Ṽs(G � G0) (7)

where Ṽs(G) is Fourier transform of the effective Kohn-
Sham potential multiplied by the unit step function and array
Bk

↵L⌫(G) can be considered as a result of application of
the muffin-tin Hamiltonian

P
L h↵

L(r)RL(r̂) to the array of

1unit step function ⇥(r) is defined to be 0 in the muffin-tin region and 1
in the interstitial

matching coefficients:

Bk
↵L⌫(G) =

X

L3
L2⌫2

Ak
↵L2⌫2

(G)h↵`⌫
L3`2⌫2

hYL|RL3 |YL2i

+
1

2

X

⌫2

Ak
↵L⌫2

(G)u↵
`⌫(R↵)u0↵

`⌫2
(R↵)R2

↵ (8)

The second part of Eq. (8) is a surface contribution to kinetic
energy2 and

h↵`⌫
L3`2⌫2

=

Z R↵

MT

0

u↵
`⌫(r)h

↵
L3

(r)u↵
`2⌫2

(r)r2dr (9)

hYL|RL3 |YL2i =

ZZ
Y ⇤
L (✓,�)RL3(✓,�)YL2(✓,�) sin ✓d�d✓

(10)
are, respectively, the radial Hamiltonian integrals and complex
Gaunt coefficients.

For ⇠1000 atom problems the resulting generalized eigen-
value problem must be solved for a dense, complex Hermitian
matrix with dimension of order 105. Since in a materials design
problem these simulations will have to run abundantly on large
parallel supercomputers that cannot hold these matrices on
individual nodes, the implementation must be designed for
distributed memory architectures. Thus the underlying arrays
have to be partitioned in such a way that the above construction
can be executed with minimum communication and results in
Hamiltonian and overlap matrices that have the desired block-
cyclic data distribution of the distributed eigensolver.

Thus, the matrix multiplies in equations (6) and (7) imply
a block-cyclic distribution for the array Ak

↵L⌫(G) of matching
coefficients, where G-vector and composite {↵, L, ⌫} indices
are distributed over, respectively, the columns and rows of a
2D MPI grid. This distribution, however, is very inefficient for
the computation of the auxiliary array Bk

↵L⌫(G) (Eq. 8), the
reason being, that in order to compute a local panel of B-
coefficients the sum over {L2, ⌫2} indices is needed which
may run out of scope of the current MPI rank. This is a
well known problem when for some operations (e.g. FFT used

2surface contribution to kinetic energy can be derived form the Green’s

identity
R
S

f(rg)d~S =
R
V

⇣
f(r2g) + (rf)(rg)

⌘
dV

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Solving the generalised eigenvalue problem

38

Ax = �Bx

A0y = �y
B = LLHxPOTRF

A0 = L�1AL�HxHEGST

A0y = �yxHEEVx

x = L

�H
yxTRSM

T = QHA0Q xHETRD

Ty0 = �y0 xSTExx

y = Qy0
xUNMTR

Standard 1 stage solver

Most time consuming step,
dominated by level 2 BLAS
(memory bound)

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Solving the generalised eigenvalue problem (cont.)

39

Ax = �Bx

B = LLHxPOTRF

A0 = L�1AL�HxHEGST

A0y = �yxHEEVx

x = L

�H
yxTRSM

A0y = �y

Ty0 = �y0

A00 = Q1
HA0Q1

T = Q2
HA00Q2

y00 = Q2y
0

y = Q1y
00

reduction to banded

tri-diagonalize

needs two eigenvector  
transformations  
(but easy to parallelise)

Most time consuming step, 
but dominated by BLAS-3

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Implementations of two-stage eigen solvers for our problem
(i.e. with back transformation of eigenvectors)

40

For hybrid CPU-GPU systems: integrated into MAGMA library

A. Haidar et al., Lecture Notes in Comp. Sci., 7905, 67-80 (2013)

A. Haidar et al., Int. J. of High Perf. Comp. App. 10.1177/1094342013502097 (2013)

R. Solcà et al., in preparation (2015)

For multi-cores systems: ELPA library
T. Auckenthaler et al., Parallel Comput. vol. 37, no. 12, pp. 783-794 (2011)

A. Marek et al., Psi-K Research Highlight, vol. 2014, no. 1, Jan. 2014

Remark: built on top of ScaLapack

Remark: distributed version built on top of a distributed implementation of libsciACC

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

1000-atom test problem

41

Li intercalated CoO2:
• 432 formula units CoO2
• 205 Li atoms
• 1501 atoms in total

~115,000 basis functions (matrix size)

Running on Cray XC30:
> CPU runs on Xeon E5-2670 (Sandy Bridge)
> hybrid: same CPU + Nvidia K20X GPU

User comparable number of sockets

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Results for the full runs (on SCF iteration)

42

active
sockets

setup, O H 
(sec.)

solve 
(sec.)

rest  
(sec.)

total  
(sec.)

energy
(kWh)

28x28 (2R:4T) 
ScaLAPACK 392 382.5 3166.8 69.2 3618.5 39.46

28x28 (2R:4T)
ELPA2 392 383.2 705.3 63.6 1152.1 17.40

20x20 (1R:8T)
ELPA2 400 374.0 720.5 61.1 1155.6 16.9

14x14 (1R:8T) 
hybrid 392 159.9 741.8 84.8 986.5 8.27

20x20 (1R:8T) 
hybrid 800 96.9 652.1 58.9 807.9 12.49

MPI ranks / socket
OpenMP threads / rank

MPI grid

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Resources used 1000-atom design problem

43

Time: ~15 minutes / iteration, i.e. 3 hours for ~10 iterations

Footprint: ~400 hybrid nodes on Cray XC30 (SandyBride+K20X)

Scan ~13 materials in 3 hours or 5,000 in ~16 days

(consider performance will improve 10-100x in by end of decade)

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Piz Dora (Piz Daint)

External Login Access (ELA)
CSCS

EPFL

AiiDA
Server

/store

Repository
access

Research
Community

Traditional access
(batch jobs)

Access through
AiiDa

Scientific
Community access

NCCR MARVEL: data science for materials design
(EPFL / CSCS collaboration)

44

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Heterogenous Supercomputing Platform @ CSCS

45

“Piz Daint” with 28 cabinets Cray XC30 hybrid and 7 cabinets Cray XC40
Cray XC40 is hosting:

– “Monte Rosa” replacement in the User Lab
– Replacement of pre- and post processing cluster of the user lab
– Successor of “Schrödinger” cluster for U. of ZH
– Cluster resources of U. of Lugano and PSI
– BigData analytics Cluster for ETH Zurich
– Cluster and data resource for NCCR project MARVEL (materials design)
Cray XC @ CSCS – a heterogeneous cloud-like environment for science (“Piz Daint" & “Piz Dora”)
– hybrid CPU-CPU nodes (Piz Daint)
– CPU only nodes (Piz Dora)
– large memory nodes for data processing
– SSD-based I/O burst buffers
– very low latency network
– high bisection bandwidth

But isn’t this expensive?
– no, it is much cheaper or we wouldn’t 
 do it this way!

Take pressure off infrastructure at
Universities and Labs, to facilitate
consolidation of their institution-
wide computing infrastructure

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

SIRIUS: Domain Specific Library

46

SIRIUS C++ library

Density class
Distributed charge
density and
magnetization
generation

MPI + OpenMP parallel model with GPU acceleration

LibXCGNU scientific
library FFTW3 HDF5 ELPA MAGMA ScaLAPACK

and PBLAS
LAPACK

and BLAS

Exciting Elk

Potential class
Distributed XC
potential and magnetic
field generation,
distributed Poisson
solver

Band class
Second-variational and
full diagonalization of the
Hamiltonian with support
of GPU and distributed
eigenvalue solvers

Force class
Atomic forces
with support of
distributed
Hamiltonian
matrix

Spglib

other (e.g. QE)

Low-level LAPW (and PW) library that supports multiple codes

~30k lines of C++ code (incl. documentation) with F90 bindings

Anton Kozhevnikov
with

Claudia Draxl,
Andris Gulans,

and Georg Huhs

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 47

References and Collaborators
• Peter Messmer and his team at the NVIDIA co-design lab at ETH Zurich
• Teams at CSCS
• A. Haidar, R. Solcà, M. Gates, T. Tomov, T.C. Schulthess, J. Dongarra, “Leading Edge
Hybrid Multi-GPU Algorithms for Generalized Eigenproblems in Electronic Structure
Calculations”, Supercomputing, pages 67-80 Springer Berlin, Heidelberg (2013)

• A. Haidar, S. Tomov, J. Dongarra, R. Solcà, T. C. Schulthess, “A novel hybrid CPU-GPU
generalised eigensolver for electronic structure calculations based on fine grained
memory aware tasks”, International Journal of High Performance Computing Applications,
August 2013

• R. Solcà, A. Kozhevnikov, A. Haidar, S. Tomov, J. Dongarra, T. C. Schulthess, “Efficient
implementation of quantum materials simulations on distributed CPU-GPU systems”,
to be published in Proceedings of the International Conference on High-Performance
Computing, Networking, Storage and Analysis, SC’15, New York, NY, USA (2015). ACM

• R. Solcà and T. C. Schulthess, “Energy and Compute Resource Modelling in Complex
Parallel Applications”, in preparation 2015

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

The real problem is software

48

T. SchulthesscrCLIM kick-off meeting, ETH Zurich, Thursday, May 28, 2015

COSMO: current and new (HP2C developed) code

!19

main (current / Fortran)

physics
(Fortran)

dynamics (Fortran)

MPI

system

main (new / Fortran)

physics
(Fortran) 

with OpenMP /
OpenACC

dynamics (C++)

MPI or whatever

system

Generic
Comm.
Library

boundary
conditions &
halo exchg.

stencil library

X86 GPU

Shared
Infrastructure

T. SchulthesscrCLIM kick-off meeting, ETH Zurich, Thursday, May 28, 2015

SIRIUS: Domain Specific Library

!41

SIRIUS C++ library

Density class
Distributed charge
density and
magnetization
generation

MPI + OpenMP parallel model with GPU acceleration

LibXCGNU scientific
library FFTW3 HDF5 ELPA MAGMA ScaLAPACK

and PBLAS
LAPACK

and BLAS

Exciting Elk

Potential class
Distributed XC
potential and magnetic
field generation,
distributed Poisson
solver

Band class
Second-variational and
full diagonalization of the
Hamiltonian with support
of GPU and distributed
eigenvalue solvers

Force class
Atomic forces
with support of
distributed
Hamiltonian
matrix

Spglib

other (e.g. QE)

Low-level LAPW (and PW) library that supports multiple codes

~30k lines of C++ code (incl. documentation) with F90 bindings

Anton Kozhevnikov
with

Claudia Draxl,
Andris Gulans,

and Georg Huhs

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 49

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering

Physical model

Mathematical description

Algorithmic description

Schulthess, Nature Physics, May 2015

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 50

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering

Physical model

Mathematical description

Algorithmic description

Schulthess, Nature Physics, May 2015

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 51

Physical model

Mathematical description

Algorithmic description

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering
Schulthess, Nature Physics, May 2015

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 52

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering

Physical model

Mathematical description

H = −t
∑

⟨ij⟩,σ

c†iσcjσ + U
∑

i

ni↑ni↓

Algorithmic description
Gc({si, l}k+1) = Gc({si, l}0) + [a0|a1|...|ak] × [b0|b1|...|bk]t

Gc({si, l}k+1) = Gc({si, l}k) + ak × b
t
k

Schulthess, Nature Physics, May 2015

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 53

Physical model

Algorithmic description

Compilation

Computer

Imperative code
lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, May 2015

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Schulthess, Nature Physics, May 2015
54

Physical model

Algorithmic description

Imperative code

Compilation

Computer architecture (X86 / Intel Xeon)

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Schulthess, Nature Physics, May 2015
55

Physical model

Algorithmic description

Imperative code

Compilation

Computer architecture (Intel Xeon-Phi)

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Schulthess, Nature Physics, May 2015
56

Physical model

Algorithmic description

Imperative code

Compilation

Computer architecture (NVIDA Tesla GPU)

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 57

Science applications using a descriptive
and dynamic developer environment

Physical model
Mathematical description

Algorithmic description

Imperative code

Architecture 1

Compiler frontend

Optimisation / low-level libraries / runtime

Architecture specific backends

Architecture 2 Architecture N…

Multi-disciplinary  
co-design of tools,
libraries,
programming
environment

iPython / Notebook

domain specific 
tools analogous to numpy

Schulthess, Nature Physics, May 2015

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Scientific computing & data (HPC) as a service

58

Scientists Developers

Use

Model development

Develop application

Use tools Develop tools

HPC Developers

Hardware for appliances

Old/current HPC

Hardware

Fortran/C/C++ code

Compute / storage / networks /  
identity mgt / security
Data centres (incl. power/cooling)

Bare infrastructure

Infrastructure as a Service (IaaS)
Data & compute services
e.g. through web services

Platform as a Service (PaaS)
Databases, algorithmic motifs
e.g. map/reduce, PDE solvers

Software as a Service (SaaS)
Modelling, searches, simulations …
e.g. weather forecast, materials design

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015

Scientific computing & data as a service

59

Compute / storage / networks /  
identity mgt / security
Data centres (incl. power/cooling)

Bare infrastructure

Infrastructure as a Service (IaaS)
Data & compute services
e.g. through web services

Platform as a Service (PaaS)
Databases, algorithmic motifs
e.g. map/reduce, PDE solvers

Software as a Service (SaaS)
Modelling, searches, simulations …
e.g. weather forecast, materials design

CSCS’ main business
> federate infrastructure with other centres
> collaborate with vendors on OpenStack, Docker, etc.
> scalable / elastic compute and storage
> networks and identity management

Collaborate with vendors, other centres, developer communities
> develop HPC platform services
> in-situ and interactive data analysis tools

Collaborate with and support user communities
> in development of simulation / data analysis software
> support simulation / data services

e.g. NCCR MARVEL, CHIPP, HBP, …e.g. Cray, Nvidia, Intel, …

e.g. JSC, CINECA, BSC, …

e.g. OLCF, TokyoTech, …

T. Schulthess2015 PSI Summer School on Condensed Matter Research, Zuoz, Monday, August 17, 2015 60

Thank you!

