Implementation of novel tools to facilitate fragment-based drug discovery by NMR:

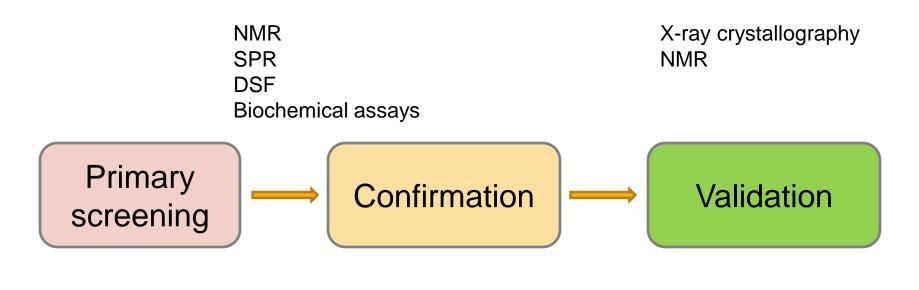
Automated analysis of large sets of ligand-observed NMR binding data and ¹⁹F methods

Andreas Lingel

Global Discovery Chemistry

Novartis Institutes for BioMedical Research, Emeryville, CA November 5th, 2013 | PSDI 2013 | Lucerne

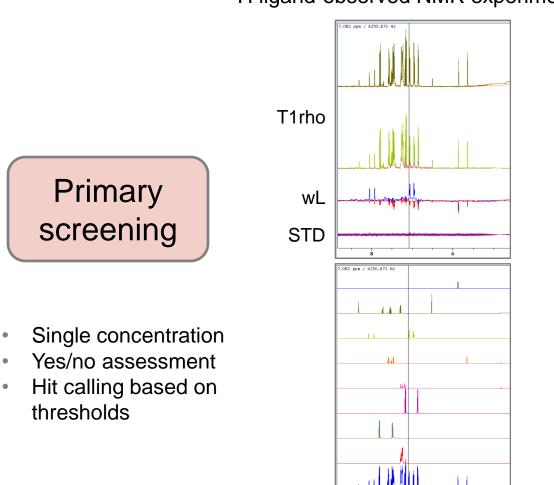
Short introduction of workflow and main challenges


Automated analysis of ligand-observed NMR binding data

¹⁹F-based NMR applications

Several bottlenecks in target-based hit finding

Need for tools to facilitate screening and characterization

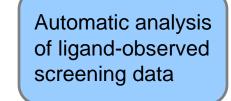

- Single concentration
- Yes/no assessment
- Hit calling based on thresholds

- Dose response
- Specificity
- $K_D \text{ or } IC_{50}$
- Rank ordering

- Structural information
- Localized binding site
- Specificity
- Analoging

3 | Improving NMR methods to support FBDD | Andreas Lingel | 2013/11/05 | PSDI Lucerne

Several bottlenecks in target-based hit finding Spectra are complex and manual analysis labor-intensive



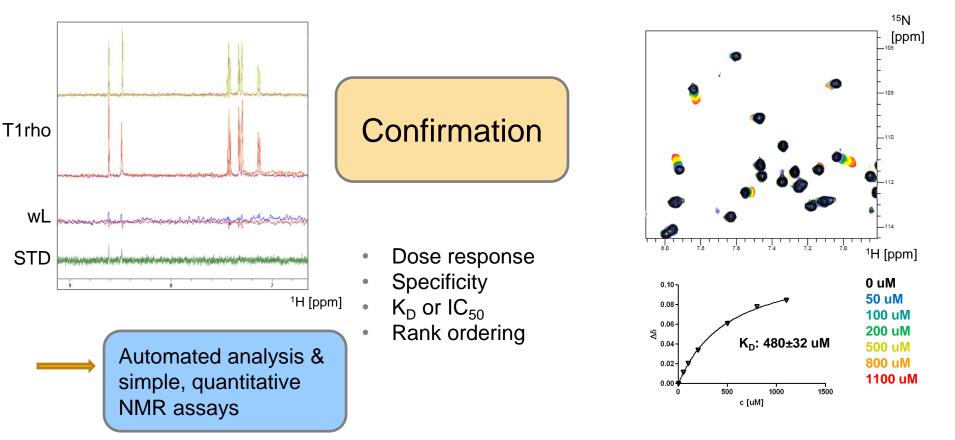
¹H ligand-observed NMR experiments

¹H [ppm]

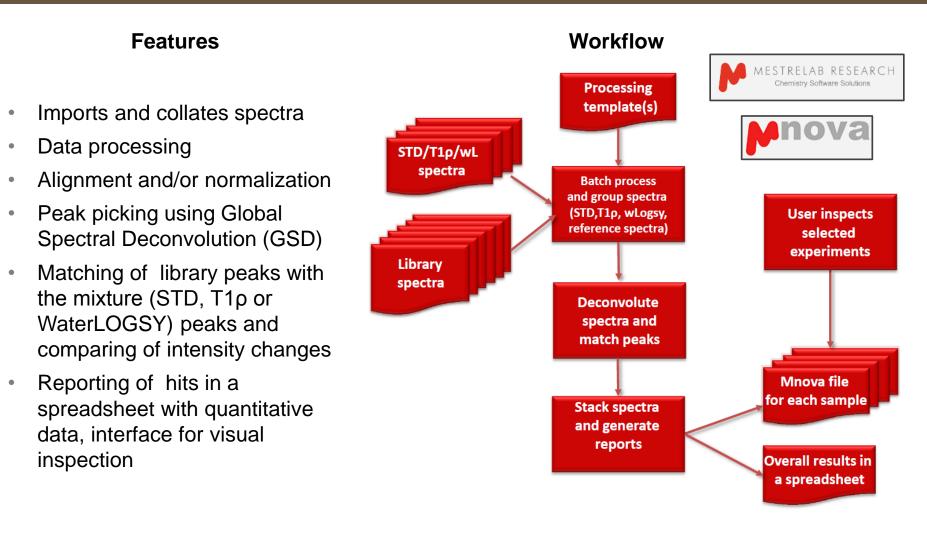
- Compounds in mixtures
- Spectra are complex and signals overlap
- Multiple experiments available (T1rho, WaterLOGSY, STD)

- Comparison to single compound spectra
- Time consuming manual analysis

U NOVARTIS


4 | Improving NMR methods to support FBDD | Andreas Lingel | 2013/11/05 | PSDI Lucerne

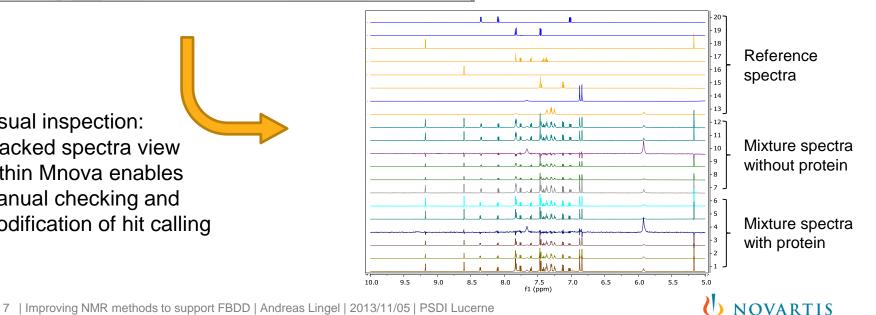
Several bottlenecks in target-based hit finding


Potential for robust, simplified and quantitative assays

¹H ligand-observed NMR experiments Single compound confirmation

Protein-observed NMR experiments Chemical shift perturbations

A novel software tool to process and analyze NMRbased binding data



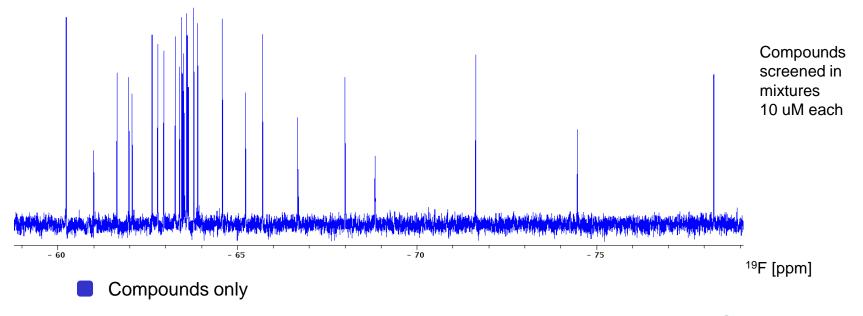
A novel software tool to process and analyze NMRbased binding data

Experiment	Fragment 1	Fragment 2	Fragment 3	Fragment 4	Fragment 5	Fragment 6	Fragment 7	Fragment 8	Result	-
1	specific hit	present	present	present	present	present	present	present	BINDING	_
10	present	specific hit	present	specific hit	present	present	present	missing	BINDING	
100	present	present	present	present	specific hit	present	present	present	BINDING	
101	present	present	present	present	present	present	present	present	NOT BINDING	
102	present	present	present	present	present	present	specific hit	present	BINDING	
103	present	present	present	present	present	present	present	specific hit	BINDING	
104	present	present	present	present	present	present	present	present	NOT BINDING	
105	present	present	specific hit	present	present	present	present	present	BINDING	
106	present	present	present	present	specific hit	present	present	present	BINDING	
107	present	specific hit	present	present	present	missing	specific hit	-	BINDING	
109	present	present	present	present	present	present	present	present	NOT BINDING	-
				m						F.
sualization Optio References	IS	lective Hit 🖉 N	fissing	V Present	👿 5 - ST	out Protein 👿 2 - T	Scout Blank 📝 7	3 - T1rho Protein 📝 7 - T1rho Blank 📝	9 - wLogsy Protein 8 - T1rho Blank	

Results are easily accessible in table format, color coding for hits/no hits

Visual inspection: Stacked spectra view within Mnova enables manual checking and modification of hit calling

Performance against manually analyzed data Optimization of mixture analysis on-going

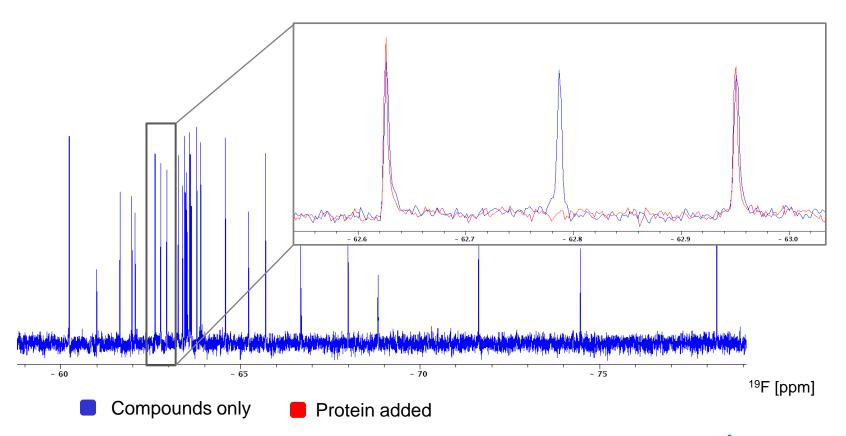

- T1rho and STD spectra of single compound experiments tested, hits from automated analysis compare well with manually analyzed results (> 85%)
- Currently testing of mixture data, large dataset from fragment library screen
- Primary hit calling (adding to total): 1 out of 3 experiments positive

	Manual analysis No. of hits	No. and % found by Mnova screen
T1rho	91	78 / 85%
STD	180	100 / 55%
WaterLOGSY	213	143 / 67%
Total	202	159 / 79%

Example from a mixture analysis

¹⁹F-detected NMR provides many advantages Rapid and robust hit finding by ¹⁹F NMR screening

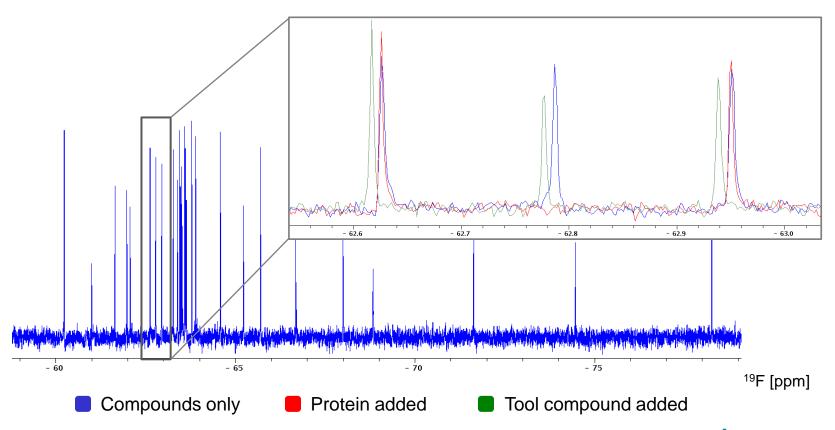
- Compounds can be screened at very low concentration due to exquisite sensitivity of ¹⁹F to binding and recent advancements in hardware
- Large chemical shift range allows screening of large mixtures
- Fast acquisition and very clean NMR spectra, enabling fast evaluation of screening data
- Fluorine is known to be involved in **favorable interactions** with proteins, e.g. carbonyl groups, Bissantz et. al (2010) *J. Med. Chem.*, 53
- Novel library design strategy based on "local environment of fluorine" concept, described by Vulpetti et. al (2009) J. Am. Chem. Soc., 131



9 | Improving NMR methods to support FBDD | Andreas Lingel | 2013/11/05 | PSDI Lucerne

Simplification of data analysis

Signal decrease can be easily quantified and analyzed automatically


Addition of protein causes line broadening - binding

10 | Improving NMR methods to support FBDD | Andreas Lingel | 2013/11/05 | PSDI Lucerne

Different binding sites can be probed at screening stage with tool compounds

Addition of tool compound restores the compound signal

11 | Improving NMR methods to support FBDD | Andreas Lingel | 2013/11/05 | PSDI Lucerne

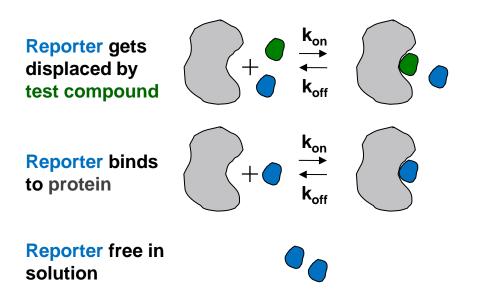
Primary screening hit could be validated and progressed into potent series

- ~ 100 analogs of fragment hit were tested in thermal shift & biochemical assays (orthogonal validation)
- Positive hits were further validated by 2D NMR chemical shift perturbation experiments

	Apo protein 250 uM fragment hit 800 uM fragment hit	2D NMR Chemical shift	LE	Biochem IC ₅₀ [uM]	Stargazer thermal shift (≥3σ, 0.8 ° C)	Compound
A		Yes	0.23	811	Yes	Fragment hit
		Yes	0.26	206	Yes	Analog 1
		Yes	0.24	337	Yes	Analog 2
	Dose-dependent chemical shift perturbations (CSP)	Yes	0.27	468	Yes	Analog 3

Alternative chemotype identified by ¹⁹F-based screening

- Analoging, 2D NMR and docking provided basis for chemistry
- Binding mode of more potent analogs could be confirmed by crystallography
- New fragment-based chemotype currently progressed into nM inhibitors with favorable ligand efficiency parameters being retained

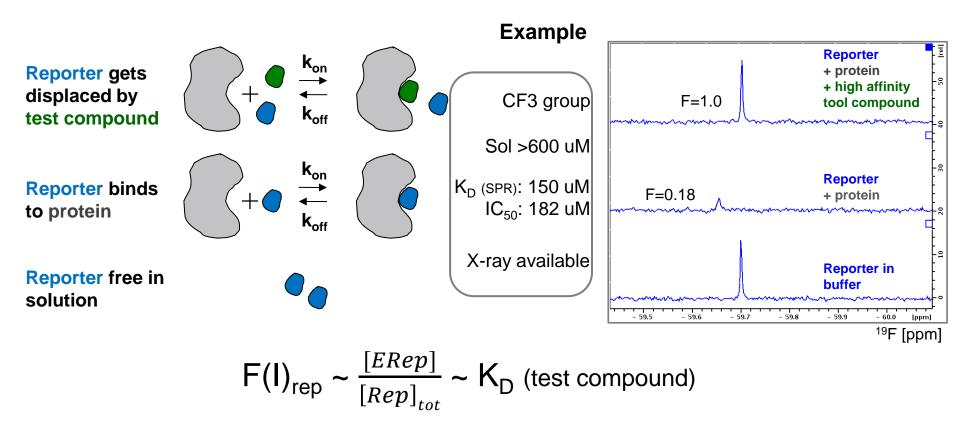

12 | Improving NMR methods to support FBDD | Andreas Lingel | 2013/11/05 | PSDI Lucerne

U NOVARTIS

¹H [ppm]

¹⁹F-based NMR reporter assays

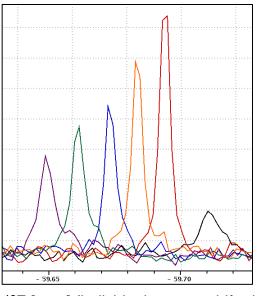
Quantitative and structural information from a single measurement


Requirements

- Fluorinated reporter compound
- Sufficient solubility to avoid assay artifacts
- Specific binding, affinity in ~10-200 uM range
- Preferably crystal structure of bound reporter available

¹⁹F-based NMR reporter assays

Quantitative and structural information from a single measurement


Displacement of reporter by test compounds provides rank ordering/K_D and confirms localized binding event

¹⁹F-NMR reporter assay for diverse applications

Quantitative and structural information from a single measurement

Conditions

- 20 uM reporter
- 1-5 uM protein
- 50-500 uM test compound
- < 5 min acquisition</p>

¹⁹F [ppm] (individual spectra shifted for clarity)

Applications

- No restriction on test compounds (size, properties)
- Data acquisition and analysis is simple and fast
- Suitable for HTS and FBS hit validation
- Quantification enables prioritization and application in compound optimization

```
Protein + reporter
+ Compound 1 (IC_{50} = 33.7 \text{ nM})
+ Fragment 1 (SPR K<sub>D</sub> = 60 µM)
+ Fragment 2 (SPR K<sub>D</sub> = 240 µM)
+ Fragment 3 (SPR K<sub>D</sub> = 190 µM)
+ Fragment 4 (SPR K<sub>D</sub> = 320 µM)
```


Summary

- Novel software tool development towards automated analysis of ligand-observed NMR binding data
 - Robustly identifies T1rho and STD hits single compound experiments in single compound experiments
 - Performance on mixtures good and being improved
 - WaterLOGSY module development started recently and being tested
- ¹⁹F NMR provides fast and robust addition to compound screening repertoire
 - Very sensitive and less prone to observing unspecific binding
 - Libraries of ¹⁹F-containing molecules enable primary screening (hit identification)
 - ¹⁹F-based NMR reporter assay provides simple way to generate quantitative binding data and confirms binding in desired pocket

NIBR Emeryville, CA

Andreas Frank Alexandra Frommlet Micah Steffek Dirk Bussiere

NIBR Basel

Simon Rüdisser Paul Erbel Anna Vulpetti Wolfgang Jahnke Anke Blechschmidt NIBR Cambridge, MA

Xiaolu Zhang Jasna Fejzo

MestreLab Research

Chen Peng Manuel Perez Santiago Dominguez Carlos Cobas

Université de Neuchâtel

Claudio Dalvit