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Iron (hydr)oxides

• Iron (Fe) - abundant in earth crust, 
mostly as iron (hydr)oxides

• 16 different (hydr)oxides, mostly 
formed as weathering products

• Often nano-sized crystals with 
high surface area – most reactive 
sorbents for contaminants in the 
environment

www.essential-hummanities.net



We will look at the structure of:

Ferrihydrite
Very common iron hydroxide
Poorly ordered
Structure/chemical formula unclear

Lepidocrocite
Orthorhombic crystal structure
Well-crystalized

Webmineral.com



Structures of Ferrihydrite and Lepidocrocite

Ferrihydrite Fe5O8H•4H2O(?)     Lepidocrocite (γ-FeOOH)

(Cornell, 2003)



But…. Do we know the structure? …. XRD
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The debate is still ongoing
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X-ray Absorption Spectroscopy (XAS):

Detailled chemical und structural information (oxidation 
state, coordination numbers, bond distances, system 
disorder)
• Solution species
• Crystaline and amorphous solids
• Surface complexes

in-situ, non destructiv

minimal sample preparation

high selectivity/sensitivity (few ppm)
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X-ray absorption spectroscopy

valence
electrons

core
electrons

Visible light
λ ~ 0.5 μm
E ~ 2 eV

X-ray light
λ ~ 1 Å (=0.1 nm)
E ~ 10 keV



Cook and Look 2015

M
L

K

CONTINUUM

PHOTOELECTRIC
ABSORPTION

M
L

K

CONTINUUM

FLUORESCENCE
X-RAY EMISSION

M
L

K

CONTINUUM

AUGER ELECTRON
EMISSION

K

K

-200 0 200 400 600 800 1000

Main Principle

Ab
so

rb
tio

n a
.u

X-ray Absorbtion Near Edge Structure; 
XANES

Relative Energy

Photoelectric 
Absorbtion

Extended X-ray Absorption 
Fine Structure, EXAFS

Pre-edge



Cook and Look 2015

100%
78%
24%
0%

Relative Energy (eV)
-20 -10 0 10 20 30

after Bertsch et al., 1995

Cr(VI)

Cr(III)

Cr
 K

a F
luo

re
sc

en
ce

 (N
or

ma
liz

ed
 C

ou
nts

)

 E < Eb

 transition of e- from ground state (e.g., 1s, 2s) to 
empty or partly filled, excited states (nd orbital)

• selection rules for e- transitions

 speciation of Cr(VI) and Cr(III)

• Cr(VI)

• toxic and mobil

•Cr(III)

• hardly toxic

• sorbed or incorporated into mineral phases 
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XANES

 E ~ Eb

 Multiple scattering of photoelectron

 Very intense and complicate resonance features: finger-
printing and theoretial calculations

 Energy of absorption edge depends on oxidation state
o Chemical shift of 1-3 eV for each withdrawing e-
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EXAFS

E>Eb

 50 - 1000 eV above absorption edge

simplified illustration: constructive & 
destructive frequencies from the   
outgoing photoelectron
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BACKSCATTERED WAVE

Absorber Atom

Backscattering Atom

Outgoing Wave

Backscattered Wave
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Free atom
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Cluster of atoms
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EXAFS

 Interference pattern (EXAFS)

• Frequency correlated to bond distance

• Amplitude correlated to coordination 
number and identity
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Data Analysis

 extraction of EXAFS
• pre-edge & spline, normalization 
• convertion to wave vector k = (E-Eo)    2m/ħ
• normally weighted by k3

EXAFS

raw data

pre-edge 
polynomial

spline

pre-edge subtracted 
data
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Experimental set-up

 Transmission 
• A = mx = ln(Io/I1)
• concentrated samples

 Fluorescence
• A = mx = If/I0
• dilute samples

 Electron-yield
• A = mx = Ie/I0
• surface sensitive

Electron Yield Detector
Ie

If

I1I0

Fluorescence Detector

X-ray

Ion Chamber Detector Ion Chamber Detector

Fluorescence X-ray 
Emission

Auger Electron 
Emission
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XAFS: measurement of the X-ray absorption coefficient (µ)

What do you measure? 
- Absorption as function of energy 
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Need a Synchrotron…
SLS

ESRF

Diamond

Soleil

and many more…
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Synchrotrons produce bright light
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EXAFS:
- Identity of nearest neighbors
- Bond distances
- Coordination numbers
- Amount of disorder

XANES: (DOS)
- oxidation state
- band structure
- multiple scattering

Pre-edge:
- localized electronic states
- coordination chemistry

Summary so far:
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Comparison: XPS, XRD, XAS

 electronic information 
 surface sensitive
 In-situ application difficult
 UHV needed

 structural information 
 bulk technique
 In-situ
 long range order

 electronic and structural information 
 bulk and surface sensitive
 amorphous materials
 In-situ
 synchrotron needed
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Example: Fe-oxides as contaminant sorbent
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Wood impregnation in Willisau

• Contaminants Cr(VI), Cu
• ~1 t Cr at a depth of 3-12 m
• Groundwater protection zone  

([Cr(VI)]max = 0.01 mg/L)

EH=150 mV
[SO4

2-]=30 mg/L
[NO3

-]=11 mg/L
pH = 7
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Permeable reactive barrier

• Contaminants Cr(VI), Cu
• ~1 t Cr at a depth of 3-12 m
• Groundwater protection zone  

([Cr(VI)]max = 0.01 mg/L)

Permeable Reactive Barrier (PRB):
couple the oxidation of Fe(0) with
the reduction of Cr(VI) 
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oxide layer

ZVI

0.5 O2 + H2O + 2 e- → 2 OH- (cathode)

• homogeneous redox reaction 
(Buerge & Hug, 1997)

• heterogeneous redox reaction 
(Buerge & Hug, 1999)

• ZVI-CrVI-direct reaction 
(Liu et al., 2008)

Fe → Fe2+ + 2 e- (anode)

Fe2+
Fe2+CrVI

Molecular Cr/Fe ratio:
1/3 
Hansel et al., 2003
>1/3 (Cr clusters)
Grolimund et al., 1999
?

Local structure ↔ Mechanism

Permeable reactive barrier
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Hitchhiker’s guide to molecular structure

FeO6 octahedron
(also: CrO3(OH)3 FeO3(OH)3)

The basic structural unit
of FeIII and oxides:
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Local structure 

Goethite (α-FeOOH)

• interatomic distances
• 3D-arrangement
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Nucleation, growth, aggregation of mineral phases

Sorption complexes

Important properties e.g. color 
(α-Cr2O3 – α-Al2O3:Cr3+)

Relation to molecular Fe/Cr
(-> mechanism)

Why study local (~5Å) structure ? 

Sherman & Randall, GCA, 67 (2003), 4223.
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Folie 32

j2 noch vergrösserung des pre-edge
ggf. noch vor und nachteile EXAFS aufzeigen
jafromme; 01.10.2008
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XANES
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homogeneous & heterogeneous
redox reactions

Cr/Fe < 1/10

POI1: Cr/Fe > 1/3
POI2: Cr/Fe ~ 1/3

Back to the beginning: Permeable Reactive Barrier

B. Flury, J. Frommer, U. Eggenberger, U. Mäder, M. Nachtegaal, R. 
Kretzschmar. Environ. Sci. Tech. 43, 6786-6792
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Basic data reduction steps of 
- compare data that is measured in different modes (trans. / fluo.) and correct for 
different absorbances

- extract the EXAFS signal (chi(k)) and the Fourier-transformed EXAFS signal
- look at radial distribution function, and fit the first shell neighbour

Tomorrow’s goals:

Excellent tutorial of Demeter (by Bruce Ravel): http://www.diamond.ac.uk/Beamlines/Spectroscopy/Techniques/XAS.html 



1. Extract EXAFS signal

- Subtract smooth background

Extraction of the EXAFS signal – chi(k)



2. Transformation from E-space to k-space

- Scattering of photoelectron on neighboring atoms

- Unit of k-space: inverse Angstroms
- „stretch“ the x-axis
- amplify signal at high energies (k-weight)

Mass of 
electron 

Edge
Energy

Plank’s
constant

Photon Photoelectron

Extraction of the EXAFS signal – chi(k)



Conversion of chi(k) to the pseudo radial distribution function (RDF)

To understand and visualize the geometric structure of our sample we need to 
Fourier transform the EXAFS signal from inverse distance into the distance domain

?

N0 X-ray absorbing atom
N1 1st neighboring scatterer (shell)
N2 2nd neighboring scatterer (shell)

Rx distance between absorber and scatterer



Conversion of chi(k) to the pseudo radial distribution function (RDF)

Fourier transformation crash course

• FT transforms data from one dimension into its reciprocal one

• example: transformation from the time into the frequency domain

Wave function with period length of 1 s                   Frequency of 1 Hz



Recover the distance of scattering atoms
from the frequency of the scattered wave

 Fourier transform the EXAFS function 
(from Å-1 to Å)

Define k-range for Fourier transformation

Lower limit: 2-3 Å-1 ; upper limit: as far as reasonable (consider signal to noise)

Conversion of chi(k) to the pseudo radial distribution function (RDF)

Fourier 
Transform 
Button



Fourier transformed of the EXAFS signal

Remember: FT creates a complex function

 always show magnitude AND real or imaginary part

magnitude

Imag part

N1

N2 N3

Conversion of chi(k) to the pseudo radial distribution function (RDF)



The pseudo RDF created in the previous step is now analyzed by fitting with a set of
model structures

 Create a model of the assumed structure
 Calculate the EXAFS function of this theoretical structure (ATOMS @ ifeffit)
 Fit the model to the data, extract structural parameters

Part 2: Fitting of EXAFS data

Calculated
scattered
wave

Corresponding
RDF



EXAFS function

Sum of damped sine functions with a pre-factor

Structural Parameters:
N:  coordination number  amplitude
R:  radial distance  frequency
2: pseudo Debye waller factor  damping

Calculate EXAFS signal of model compound! → FEFF

Theoretical first Ru-Ru shell of
metallic ruthenium

What information can we extract from a fit?

Part 2: Fitting of EXAFS data



Reminder: what‘s a coordination shell?

Every shell of atoms has a specific distance from the absorber and a specific 
coordination number

Part 3: Understanding the fit results

From fitting of EXAFS data information about 

- the distance R of each shell from the absorbing atom

- the number of atoms in each shell (coordination number) is obtained.



XAS at the Swiss Light Source
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Thank you for your attention! Questions?
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X-rays (light with wavelength 0.06- 12 Å or energy 1-200 keV) are absorbed by all matter 
through the photo-electric effect:

An X-ray is absorbed by an atom when the energy of the X-ray is transferred to a core level 
electron (K, L, or M shell) which is subsequently ejected from the atom. Any excess energy 
from the X-ray is given to the ejected photo-electron.

The basic concept of XAFS
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Electrons have  a particle and wave nature.  The photoelectron wave propagates away 
from the central atom (absorber), and it may scatter off neighboring atoms and finally 
return to its point of origin.

hu e-

Energy

A

fine structure

e-

Single scattering
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h
In phase

Out of phase
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The consequence of these scattering phenomena and wave interactions is that 
the intensity of X-ray absorption oscillate with a dependence on the structural 
environment of the absorber.  Mathematically modeling these oscillations 
provides precise local structural information.  


