From automated sample handling to robot based goniometer: few steps towards a fully robotized pipeline for protein crystallography

> J-L Ferrer IBS/Synchrotron Group (Grenoble, France)

PSDI meeting, November 2013

Systems commercialized by $\boxed{2}\sqrt{3}$ (visit NatX-ray booth, room 3)

G-Rob for beamlines

Usually including

- G-Rob functionalities
- (Sample environment)
- Supporting frame

In operation at LNLS (Brazil), ESRF (France), NSLS (USA)

G-Rob lab systems

All-in-One laboratory solution, with

- G-Rob functionalities
- X-ray source
- Detector
- Sample environment
- Table and X-ray shielding

Available as

- A complete system
- An upgrade for existing lab diffraction systems

In operation at EPFL (Switzerland), CBS (France)

G-Rob configurations

A large variety of X-ray sources

Sealed tube, rotating anode

A large variety of detectors

IP, CCD, Solid-State detectors

A complete sample environment

- Sample microscope with motorized zoom
- Motorized detector translation
- Motorized 2-Theta detector rotation
- Motorized beam stop
- Cryo-cane translation

A choice of G-Rob functionalities

Cryo-sample transfer

Plates, microchips (*in situ* screening & datacoll.)

G-Rob 1D/1D+

Beam monitoring, quick-realign

a goniometer for single sample

- frozen crystal, capillary

Frozen crystals,

capillaries, powder

Applications

- classical data collection
- shutter-less data collection
- Phi data collection
- powder diffraction

Sample harvesting

G-Rob function: 1D/1D+

- Goniometer capability
- Validated with beam down to 90 µm
- Exposure time as short as 0.1s for 1° oscillation

$1D \rightarrow 1D+$

- Improved goniometer capability
- A 6 µm radius sphere of confusion for small beams

G-Rob function: Powder diffraction

Small molecule powder

2-4 rotation / sec Continuous translation

Cryo-sample transfer

Plates, microchips (in situ screening & datacoll.)

Beam monitoring, quick-realign

Frozen crystals,

capillaries, powder

Sample changer

G-Rob 1DT

Cryo-frozen samples transfer

- Automated transfer of frozen samples
- 90 to 240 samples storage Dewar - SPINE standard format

Applications

- high throughput screening of frozen crystals
- remote controlled experiments

Sample harvesting

G-Rob 1DT for in-house systems

- Rapid sample changer cycle time
- Compatible with SPINE standard
- Storage Dewar for 90 samples

G-Rob 1DT for beamlines

- Very fast: cycle time < 40 sec
- Compatible with SPINE standard
- Storage Dewar for 90 up to 240 samples

Cryo-sample transfer

Plates, microchips (*in situ* screening & datacoll.)

Beam monitoring, quick-realign

in situ screening & data collection

G-Rob 2D

- SBS micro-plates (sitting/hanging drops)
- SBS high density batch plates
- micro-chips
- high pressure cells

Applications

- rapid crystallization screening
- data collection at room temperature on series of crystals
- automated screening of compounds, fragments, heavy atoms

Sample harvesting

Frozen crystals, capillaries, powder

G-Rob function: 2D

- *In situ* screening for crystallization plates
- Up to 80 degree rotation range for in situ data collection

Crystal Listing

Position off all crystals on a plate can be recorded by single clicks. Then data can be recorded in a row on these crystals, in a fully automated way.

Listing on:	G-Rob		
Number of samples	79		
< X > error (μm)	3		
< Y > error (μm)	3		
< radius > error (μm)	5		
X standard deviation (μ m)	2		
X standard deviation (μ m)	2		
radius standard deviation (µm)	3		

Experiments performed on the in-house G-Rob system of the EPFL crystallography platform (Prof. S. Cole laboratory, Lausanne).

	Lysozyme	NikA-FeEDTA
Data collection		
Resolution (last shell) (Å)	2.10	2.45
Completeness (last shell) (%)	71.6 (75.0)	68.4 (71.4)
R _{sym} ^a (last shell) (%)	13.9 (38.5)	13.8 (41.6)
I/σ (last shell) (I)	5.61 (2.75)	4.45 (2.20)
Refinement		
R _{work} ^b (%)	18.82	17.39
R _{free} ^c (%)	23.11	25.07

Fe(III)-EDTA binding site in NikA. Omit Fourier electron density map of Fe-EDTA contoured at 3 sigma

Structure of NDK from A. Polyphaga Mimivirus solved "in the drop"

(C. Abergel, L. Jacquamet, CNRS)

space group: p6(3) a/b/c: 70.8/70.8/106.3 resolution: 2.3 Å completness: 80 %, I/σ(I): 3.3 Rsym: 19.6 %, Rfree: 27.4 %

Extra-cellular domain of a membrane protein (A. Haouz, Inst. Pasteur, Paris)

resolution: 1.8 Å

complet.: 90 %

(anomalous)

>300 um crystals No diffraction when frozen Beamline: FIP-BM30A Plate: X-ray plate Resolution: ~ 10 Å

In situ screening

Samples recently proved to be diffracting protein crystals using G-Rob 2D ("*in situ*") screening

Adenovirus surface protein in complex with its receptor

In situ experiment performed on FIP-BM30A (5 Oct 2012) C. Zubieta, P. Fender (EMBL-Grenoble), A. Lieber (Washington Univ., Seattle)

Microbatch crystallization assay (HT platform, HWI Buffalo)

in situ screening in 1536-well plate with G-Rob on FIP-BM30A

Diffraction at 6.3 Å on 30x10 μm² crystals

Aim of the experiment: study of the complex between the virus capside fiber and the human Desmoglein-2 receptor. This interaction leads to the opening of epithelial cells intercellular junctions, responsible for virus entry.

Intranuclear Adenovirus cristals P. Fender *et al.*, EMBL

In situ analysis of crystals appeared in the insect cells used for expression.

Test of ERK-2 in P21 with bromated ligand

Completness of 83% by merging 3 dataset (50+50+41 frames) Rsym ~5.4 at 2.15 Å.

Refinement against the structure of ERK-2, with no ligand.

ERK-2 (6PB) Refinement: Refmac/Coot Without ligand (R/Rfree ~ 20.4/25.5)

fo-fc (orange) 0.9 sigma

2fo-fc (blue) 0.9 sigma

Collab. G. Labesse, CNRS/CBS (Montpellier)

Interest of in situ for protein dynamic

Flash cooling of protein crystals

- biases structural collective motions in protein crystals;
- remodels the conformation of > 35% of side chains;
- eliminates packing defects necessary for functional motions;
- induces bias toward smaller, overpacked, and unrealistically unique models.

Instead, **room-temperature** X-ray crystallography experiments, such as the *in situ* experiments, helps in revealing

- motions crucial for catalysis,
- ligand binding,
- allosteric regulation.

In the signaling switch protein, H-Ras, an allosteric network consistent with fluctuations detected in solution by NMR was uncovered in the room-temperature, but not the cryogenic, electron-density maps (Fraser *et al.*, PNAS, 2011 (108), 16247-52).

Cryo-sample transfer Plates, microchips (*in situ* screening & datacoll.)

Beam monitoring, quick-realign

Sample harvesting

Frozen crystals, capillaries, powder

G-Rob Monitoring

Beam monitoring

- fluorescent screen
- diode monitor

Application

- Check the beam position
- Check the beam intensity
- automated beam optimization (~"Quick Realign") by users

G-Rob function: Monitor

A robot tool for beam monitoring

- A diode for intensity measurement
- A fluorescence screen for beam imaging

In association with motorized optics **→** automated beam alignment

Cryo-sample transfer

Plates, microchips (*in situ* screening & datacoll.)

Beam monitoring, quick-realign

Frozen crystals, capillaries, powder

G-Rob Harvesting (in development)

Sample Harvesting

- Semi-automated harvesting
- Remote controlled micro-gripper

Applications

- Remote harvesting
- Crystal freezing
- Transfer to loops for storage

Misc

OptiCryst

The Visualization Bench

Beam monitoring

- Inverting microscope
- Crystal Listing

Applications

- Visual screening
- Crystal position recording
- On line: sample harvesting

Visualization bench

Fully motorized inverted microscope designed for the analysis of micro-plates. Equipped with motorized zoom, front and back LEDs for sample lightening. Controlled through a user friendly graphical interface.

Crystal Listing

A dedicated microscope can be used off-line for

- -Automated image recording
- -Selection of crystals (one click)
- \rightarrow Position of crystals recorded in a local coordinate reference
- \rightarrow Data uploaded to the G-Rob database for automated screening

- ① Visualization Bench
 ② In situ X ray diffraction
- ② In situ X-ray diffraction with G-Rob

③ Automatically centered well with crystal coordinates in the local reference

④ Crystal Listing tab in Visualization Bench GUI

Crystal Listing

Listing on:		Visualisation bench	G-Rob
Number of samples		44	79
< X > error (µm)		33	3
< Y > error (µm)		21	3
< radius > error (µm)		41	5
X standard deviation (μ m)		17	2
X standard deviation (µm)		14	2
radius standard deviation	(µm)	17	3

Experiments performed on the in-house G-Rob system of the the EPFL crystallography platform (Prof. S. Cole laboratory, Lausanne).

VisuBench & Crystal-Listing

OptiCryst

Based on the Cryobench available at the ESRF on ID29: D. Bourgeois, et al. (2002). J. Appl. Cryst. 35, 319-326. Head of the Cryobench team at ESRF: A. Royant

MiSC

- Goniometer + microscope + cryo-cane
- Reflective optics
- Spectrometer

Applications

- Fluorescence measurements
- Absorption measurements
- Synchronized experiment

MiSC

A Micro-Spectrophotometer for Crystals

- UV/Visible absoption, measured on the 200-1100 nm range
- Fluorescence measurements at 90° on micro-amount of sample
- Samples can be:
 - Crystal down to 10 μ m
 - Nanoliters solutions
- Spectrometer : 200-1025 nm range

Based on the CryoBench (IBS & ESRF/ID29)

Stand alone version As a G-Rob function In line version for goniometers Detector as close as 40 mm Access for sample changer

Absorption source: 210-1700 nm UV-NIR deuterium/tungsten Fluorescence source: 455 nm LED source or 473 nm SS laser Sample holder: 2-axis gonio head (crystals), cuvette holder Sample visualization: with video microscope Polarizer, optical fibers

X. Vernede Y. Sallaz-Damaz

N. Larive

For testing the <u>in-house G-Rob system</u>: EPFL, Switzerland For testing the <u>synchrotron G-Rob system</u>: FIP-BM30A at ESRF, France

In both case contact: jean-luc.ferrer@ibs.fr

R. Richaud

E. Girard A. Royant

...and the crystallography platform at the EPFL: F. Pojer, S. Cole **Funding:** CEA (TS Program), CEA/DSV, CNRS, IBS, Rhone-Alpes

