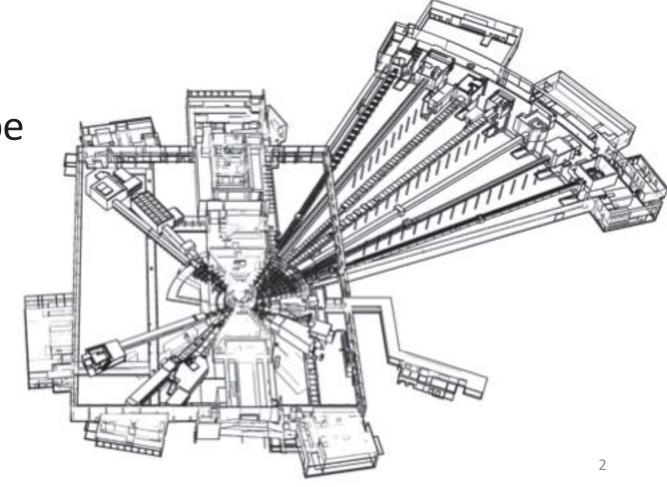


Motion Control Commissioning on the V20 Beamline

- @ HZB -

DENIM 2018 19th September 2018

Paul Barron


<u>ESS Motion Control and Automation Group</u>

Introduction

 The European Spallation Source (ESS) is a spallation neutron source under construction in Lund, Sweden.

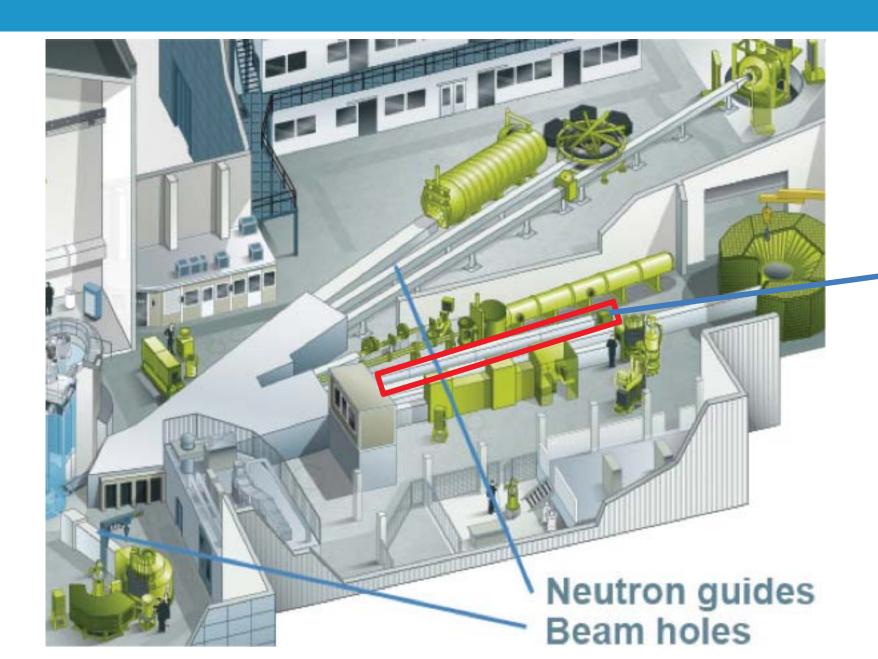
 15 initial instruments delivered by in-kind partners across Europe with 22 anticipated and ~400 initial motion axes.

Introduction

 Presentation on the first motion control system commissioned on the ESS Test Beamline in Germany.

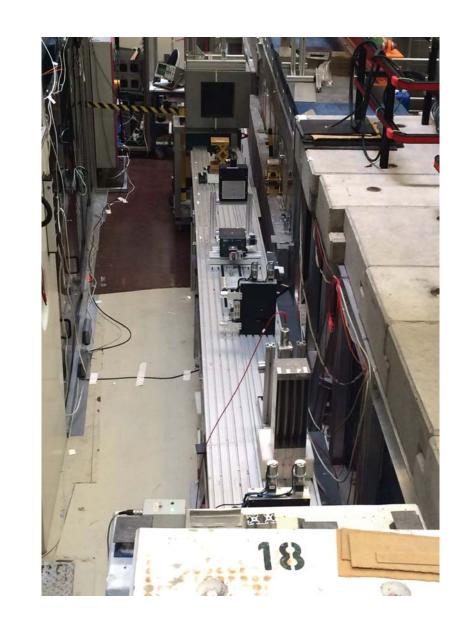
Overview

- BER-II reactor & ESS Test beamline
- Project scope
- Requirements
- Hardware design
- Standard software design
- Control architecture levels
- Implementation of slit system
- Commissioning outcomes
- Lessons Learnt


 ESS Test Beamline, V20, was originally part of a German In-Kind contribution.

- 10MW BER-II research reactor reactor located in Berlin and operated by Helmholtz-Zentrum Berlin (HZB).
- Commissioned 1973 but will shut down permanently end of 2019.
- Two guide halls and 23 instruments.

HZG Guide Halls



ESS Test Beam Line V20

V20 Beamline

- Designed to mimick the ESS pulse structure (14Hz, 2.86ms).
- Thereby enabling the development of techniques and technology adapted to the long pulse source of ESS.
- V20 project includes integration and development of components and control systems.
- Flexible experimental setups and a wide selection of components (motion stages) in different configurations.

V20 Beamline Project

- h the 2011 to 2014: Design and installation in present
- 2011 to 2014: Design and Installation in printing instruments upgrade program of H77CA Group
 Spring 2015: "hot" committee ESS MCA Group
 2015/2016: First and printing to mainly used by instrument for mission in printing in printing
- instrument of mission or method development.

 2013/2010. This is infinitely used by instrument of mission or method development.

 2013/2010. This is infinitely used by instrument of mission or method development.

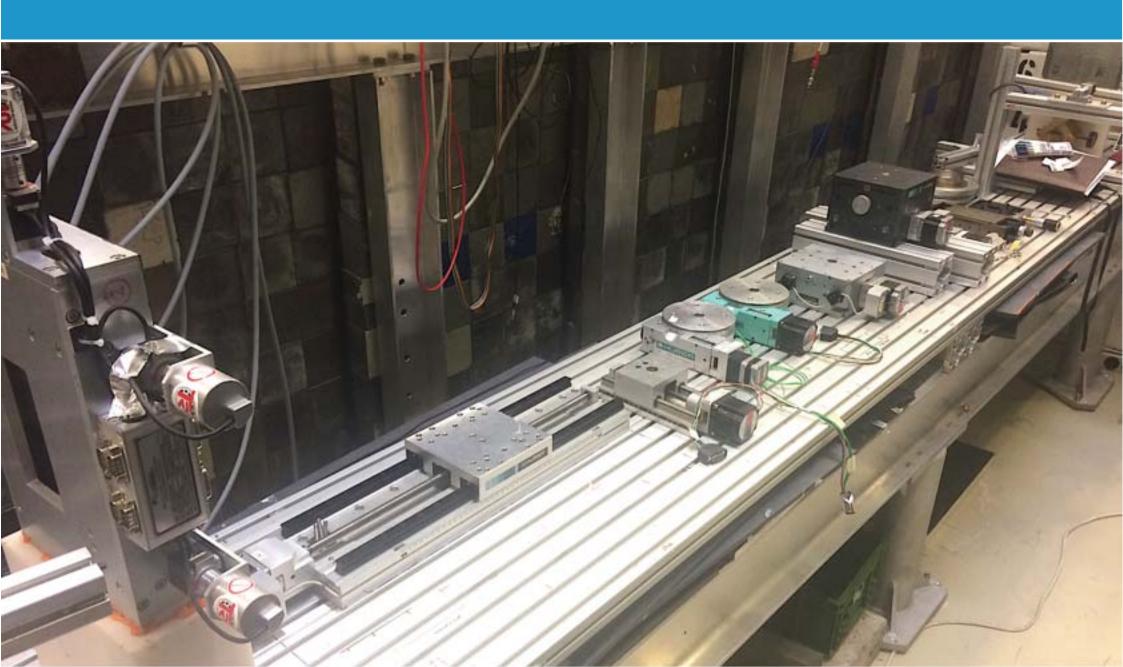
 2013/2010. This is infinitely used by instrument of mission or method development.

 2013/2010. This is infinitely used by instrument of mission or method development.

 2013/2010. This is infinitely used by instrument of mission or method development.

 2013/2010. This is infinitely used by instrument of mission or method development.

 2013/2010. This is infinitely used by instrument of mission or method development.
- 2017/2018: Control system integration (NICOS, EPICS).
- 2018: Motion control upgrade <- this presentation.
- 2019. Reactor shut down and some components shifted to ESS.


Table of Motion

Axis #	Axis Name	Device	Motion Type	Туре	Brand	Part #	Driver Voltage [V]	Set Current [A]	Steps / Rotation (if stepper)	
1	WFM Chopper 1	WFM Chopper distance	Linear		5			-		
2	WFM Chopper 2	WFM Chopper distance	Linear							fixed
3	Slit1 horizontal top	Slit 1	Linear		VEXTA	,				installed
4	Slit1 horizontal bottom	Slit 1	Linear		VEXTA					motanea
5	Slit1 vertical left	Slit 1	Linear		VEXTA					
6	Slit1 vertical right	Slit 1	Linear		VEXTA					
7	Polarizer_ROT	Polarizer Positioning Unit	Rotary		Phytron?					
8	Polarizer_Translation	Polarizer Positioning Unit	Rotary		Festo?					
9	Slit2 horizontal top	Slit 2	Linear		VEXTA	19 3				
10	Slit2 horizontal bottom	Slit 2	Linear		VEXTA	1				
11	Slit2 vertical left	Slit 2	Linear		VEXTA	5				
12	Slit2 vertical right	Slit 2	Linear		VEXTA					
13	Slit3 horizontal top	Slit 3	Linear		VEXTA					
14	Slit3 horizontal bottom	Slit 3	Linear		VEXTA					ما ما محسد میں
15	Slit3 vertical left	Slit 3	Linear		VEXTA					portable
16	Slit3 vertical right	Slit 3	Linear		VEXTA					installed
17	UN1	Linear stage 1	Linear	2 Phase Stepper	VEXTA	PK266-02B		2A?		
18	LIN2	Linear stage II	Linear	2 Phase Stepper	VEXTA	PK266-03A		3A?		
19	LIN4X	Linear stage 4XY	Linear	2 Phase Stepper	VEXTA	PK266-03A		3A?		
20	LIN4Y	Linear stage 4XY	Linear							
21	LIN5Z	Linear stage 5	Linear	2 Phase Stepper	VEXTA	PK266-03A		3A?		
22	Omega1	Rotation table I	Rotary	2 Phase Stepper	VEXTA	PK243A1-SG36		0.35A?		
23	Omega2	Rotation table II	Rotary	2 Phase Stepper	VEXTA	PK266-03A		3A?		
24	ALPHA	Goniometer I	Rotary	2 Phase Stepper	VEXTA	PK223PB		0.95A?		
25	BETA	Goniometer II	Rotary	2 Phase Stepper	VEXTA	PK266-03A		3A?		
26	KAPPA	Goniometer II	Rotary	2 Phase Stepper	VEXTA	PK266-02B		2A?		
27	СНІ	Sample Goniometer	Rotary	2 Phase Stepper	VEXTA	PK266-02B		2A?		10
28	PHI	Sample Goniometer	Rotary	2 Phase Stepper		0				-

Motion stages

Aim & Scope of MCA Project

• Aim

- Apply and test ESS MCA technologies and principles to a real beamline.
- Upgrade existing motion control system for instrument scientist.
- Work as a team with different groups with ESS.

Scope

- Construct motion control system to control 8 axes.
- Axes 1-4: Slit system, axes 5-8: removable motion stages.
- Control from EPICS and NICOS (vertical integration).
- Investigation of virtual axes at MCU level and evaluate the benefits of logic at different control levels.
- Commission the MCU in Berlin.

The Team

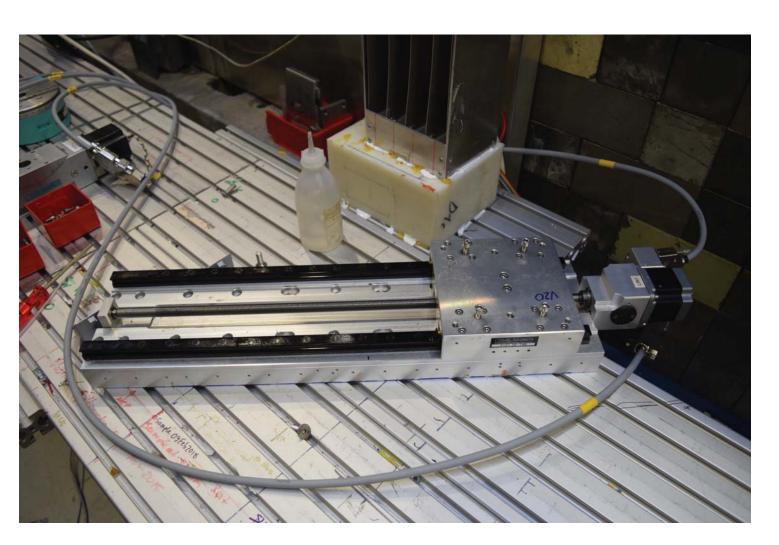
- Hardware, installation, ePLAN drawings: Markus Larsson (ESS MCA)
- Planning, motion controller programming, commissioning: Paul Barron (ESS MCA)
- EPICS: Torsten Bögershausen (ESS MCA)
- ICS (EPICS): John Sparger (ESS ICS), Krisztian Löki (ESS ICS based in Hungary)
- DMSC (NICOS): Matt Clarke, Michael Hart (ESS In-Kind team at ISIS)
- Instrument scientists: Robin Woracek (ESS), Peter Kadletz (ESS)

MCA components – Height stage

Z-Stage (Z-Sample) Huber Model 5103.2 (≈5103.A20-40), travel 40mm

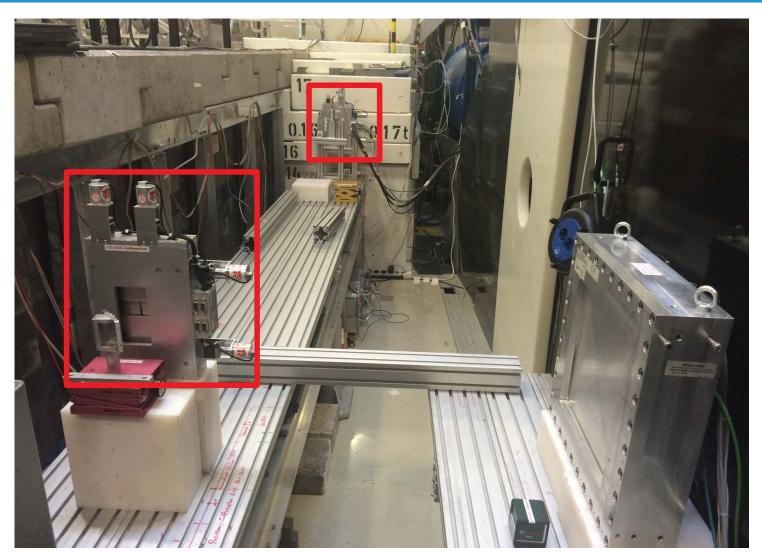
MCA components – Goniometer

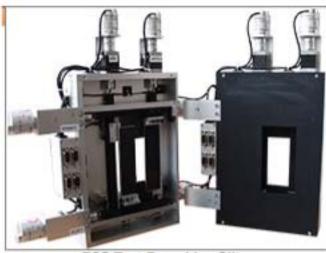
Goniometer (BETA), Huber Model 5202.4 (≈5202.40), range ± 30° No limit switches



Rotation (OMEGA2) Huber rotation stage Model 410 No limit switches

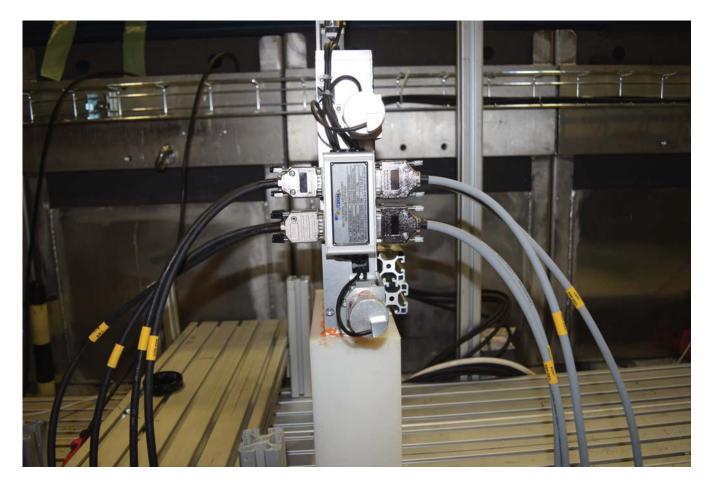
MCA components – Lin 1 stage




Translation (LIN1) Huber linear table, Model 5101.30-400, travel 400mm

MCA components – Slit system III

Mirrotron slit system

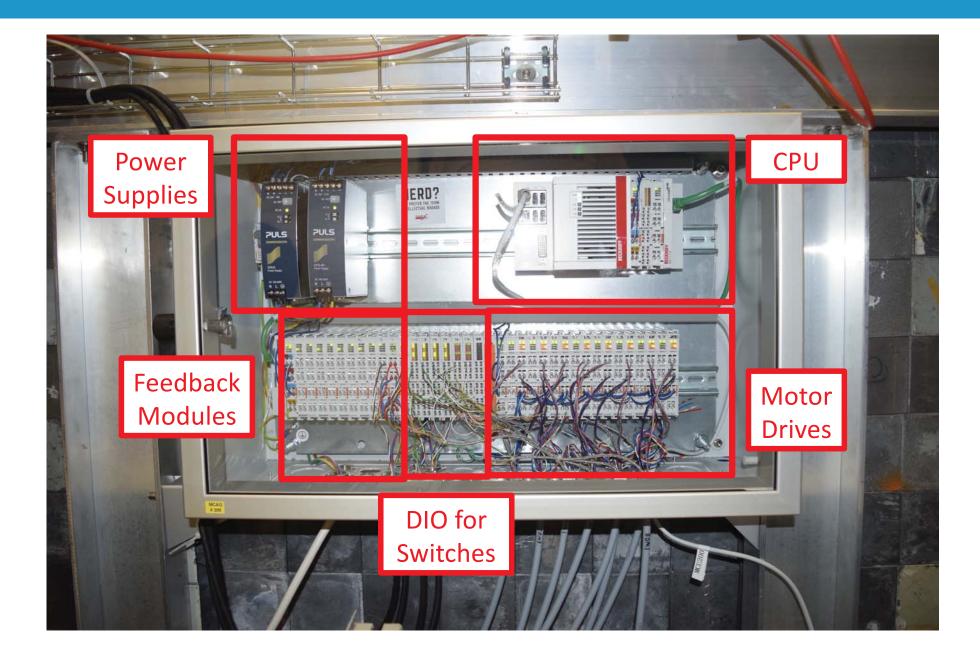

ESS Test BeamLine Slits HZB

MCA components – Slit system III

Axes

Axis #	Axis Name	Device	Motor	Encoder
1	Slit Y+	Slit System	VEXTA PK224PDB	Trelectronic CMV36M
	Left Blade		2-phase stepper, max. 1.5A, 200 steps/rev	Absolute SSI - 4096 cts/rev
2	Slit Y-	Slit System	VEXTA PK224PDB	Trelectronic CMV36M
	Right Blade		2-phase stepper, max. 1.5A, 200 steps/rev	Absolute SSI - 4096 cts/rev
3	Slit Z+	Slit System	VEXTA PK224PDB	Trelectronic CMV36M
	Upper Blade		2-phase stepper, max. 1.5A, 200 steps/rev	Absolute SSI - 4096 cts/rev
4	Sit Z-	Slit System	VEXTA PK224PDB	Trelectronic CMV36M
	Lower Blade		2-phase stepper, max. 1.5A, 200 steps/rev	Absolute SSI - 4096 cts/rev
5	Motion Stage	Sample	VEXTA PK266-03A	None - Open loop
	Height (height1)	Positioning	2-phase stepper, max. 3.5A, 200 steps/rev	
6	Motion Stage	Sample	VEXTA PK266-03A	None - Open loop
	Omega Rotation (omega2)	Positioning	2-phase stepper, max. 3.5A, 200 steps/rev	
7	Motion Stage	Sample	VEXTA PK266-03A	None - Open loop
	Goniometer (beta)	Positioning	2-phase stepper, max. 3.5A, 200 steps/rev	
8	Motion Stage	Sample	VEXTA PK266-03A	None - Open loop
	Linear stage (lin1)	Positioning	2-phase stepper, max. 3.5A, 200 steps/rev	

Control Unit Hardware



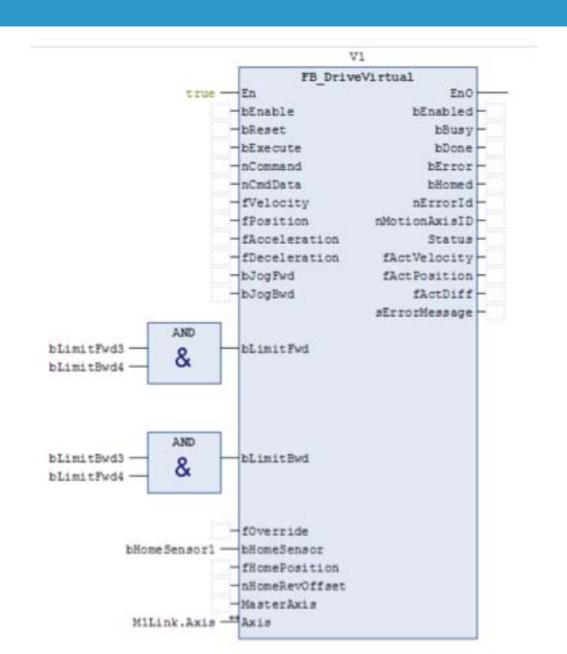
- Beckhoff CPU CX-5130
- 8 x EL7047 Stepper motor modules
- 2 x EL5002 2 Channel Absolute SSI encoder modules
- 1 x EL2014 DO module for SSI Power
- 4 x EL1808 DI & 2 x EL2819 DO for limits
- 4 x EL5101 Incremental encoder modules (for future)

Control Unit Hardware - Cabinet Installed

Installation

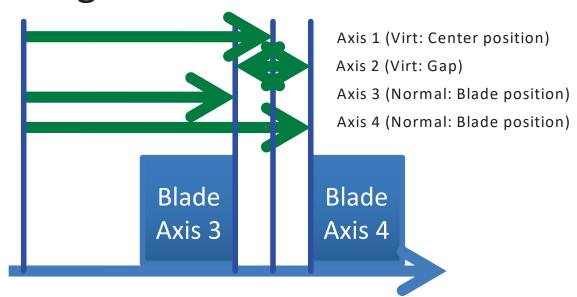
Cabinet Installation

ESS Standard Software



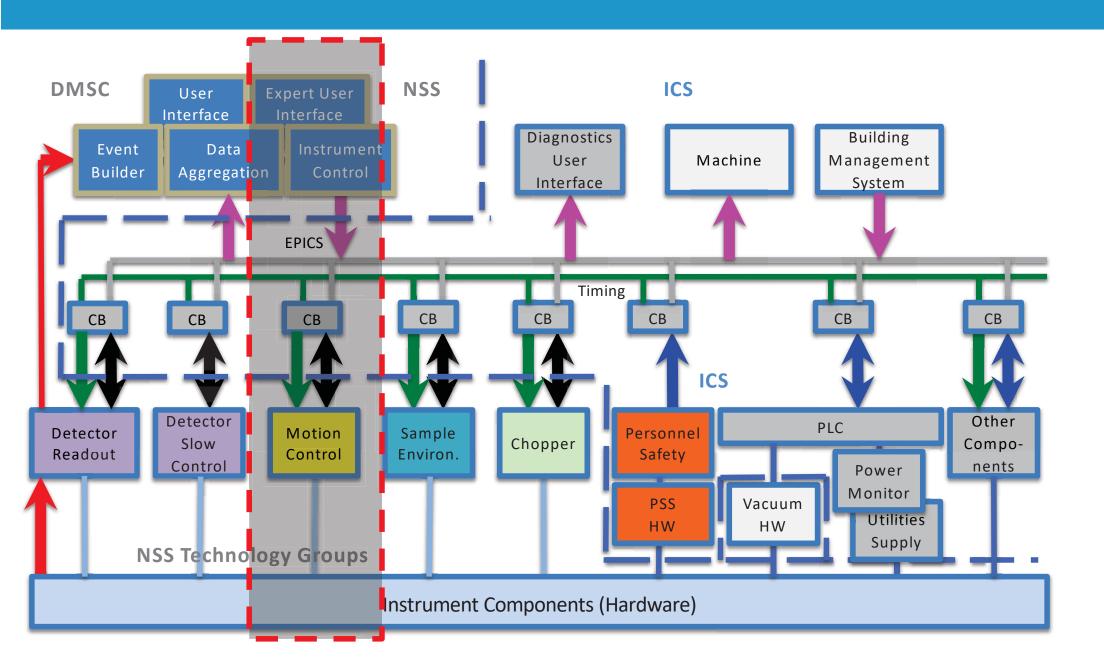
Three layers

- TwinCAT: Utilising function blocks from the ESS MCA standard library (tc_mca_std_lib). Standard way of controlling axes.
 EPICS communications module to talk to EPICS.
 https://bitbucket.org/europeanspallationsource/tc_mca_std_lib.git
- EPICS TwinCAT driver developed over a 2-3 year period within MCA Group. New method with ADS driver talking directly to TwinCAT.
- NICOS implemented during commissioning but not too much testing before commissioning.

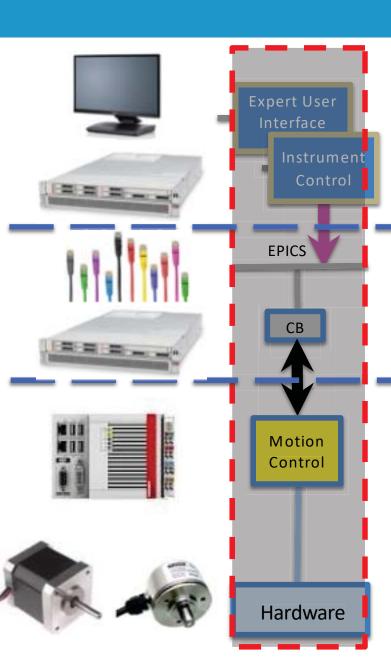


Non-standard Slit Axes

- Slit axes are are non standard since the blades can collide -> machine protection.
- Scientists prefer to specify gap and gap centre using virtual axes which feeds into our requirements. This is often done in higher levels.


Slit Requirements

- The control software shall:
 - Be controlled by two virtual axes: one for gap and one for the centre of the gap.
 - Prevent collision of the blades.
 - Have proper soft limits set for virtual axes.
 - Show correct axis data in EPICS for gap/centre. This includes correct read back values for position and status bits.
 - Able to recover from an error without requiring specialist intervention.
- The control software should:
 - Able to drive physical axes independently from EPICS without requiring user intervention such as homing/toggling a bit.
- But where to implement the logic......



The ESS modular control system architecture

Application for motion control

User Interface

Instrument Control

Instrument Representation Layer

EPICS network

EPICS IOC

Abstraction & Integration Layer

Local Controller

Hardware & Hardware Representation Layer

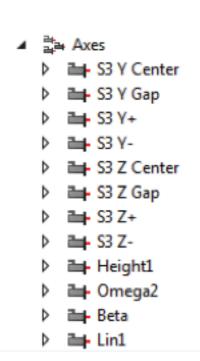
Hardware Controller

Motion Hardware layer

- Performance: Control is near to the hardware, low latencies.
- Safety aspects can be handled on hardware basis.
- Full control of machine protection.
- Control can be well adapted to the mechanics.

- The EPICS network is distributed over all ESS and is connecting all control devices.
- Flexibility: Changes can be implemented easier by the user with more people able to customise.
- Central services like archiving or alarm/warning handling are already implemented in the layer.

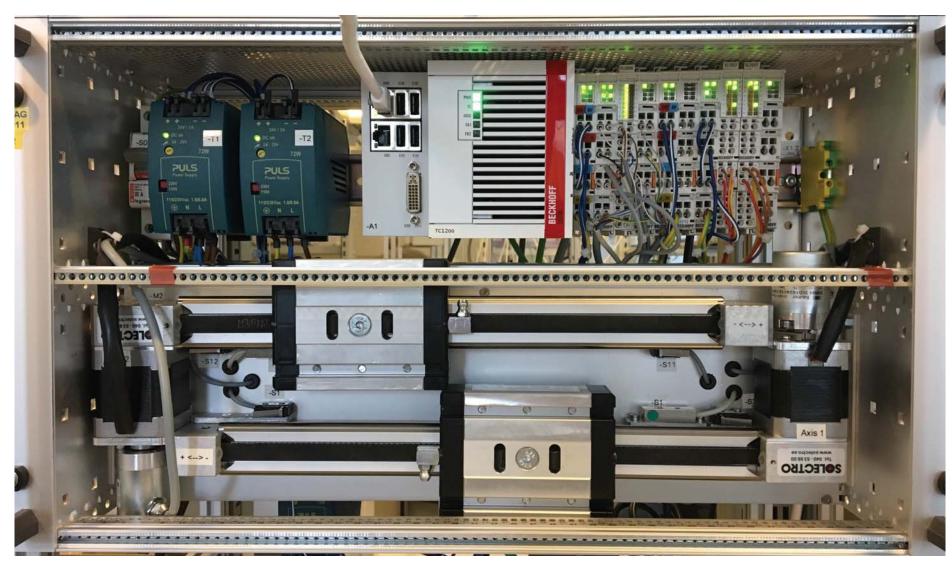
Trade offs


Balance between:

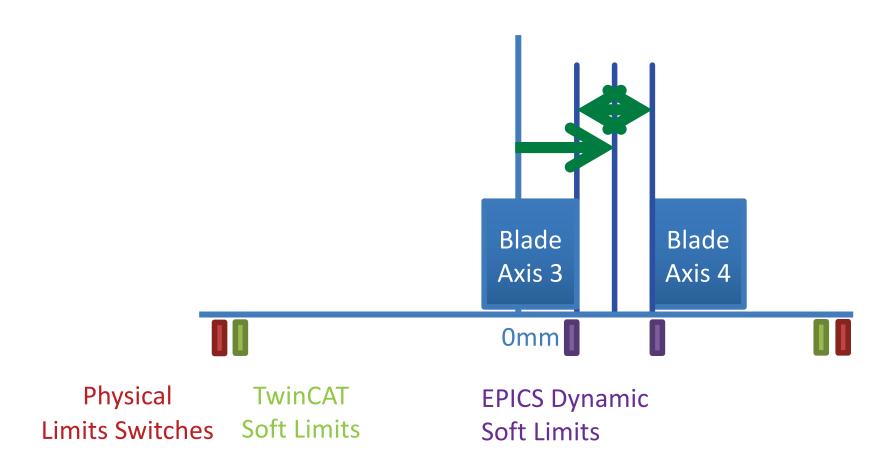
- The user can do everything vs. the technical personnel needs to do everything.
- The more is implemented in the lowest level, the more the technical personnel will be called in to fix things.
- Minimize the number of layers (= service groups involved)
 when distributing functionality over the layers.
- Use already existing functionality in the layers to facilitate software development.

Implementation of Slits (TwinCAT)

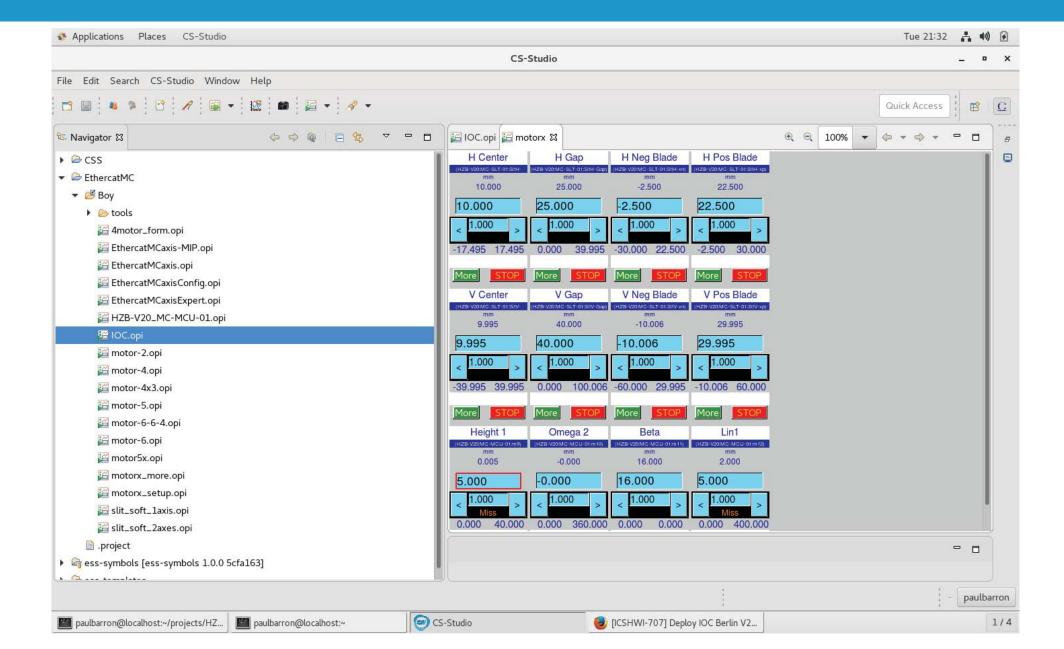
- Four TwinCAT axes per slit pair: two virtual and two physical. Convention as follows:
 - V1-Center (virtual)
 - V2-Gap (virtual)
 - M3-Positive Blade (physical)
 - M4-Negative Blade (physical)



- Beckhoff function block (GearInMultiMaster): two master axes (virtual) driving the slave axes (physical).
- Master/slave relationship only enabled when a command is received on a virtual axes; otherwise physical axes free to move independently.
- Special slit function block to co-ordinate slit control.
 Checks to prevent the blades colliding with each other and reduce the speed as the blades approach each other.



- A soft slit object was implemented in the EPICS layer with dynamic soft limits to further avoid collision of the slit blades.
- NICOS has existing functionality to convert virtual axes positions into physical axes positions.
- The slit system is able to be controlled using centre and gap virtual axes at all three software layers.


Implementation of Slits (Limits)

Implementation (EPICS)

Outcomes

- Motion stages commissioned without major problems in TwinCAT.
- Slit functionality currently at the TwinCAT level.
- EPICS worked well with a few small bugs to do with displaying virtual axis parameters.
- NICOS was used but lacking a few features for portable temporary axes.
- Experience gained on using virtual axes in TwinCAT for slit systems.

Lessons Learnt

- Test as much as possible in the lab beforehand.
- Cabling the device cables prior would have saved time during commissioning.
- Beckhoff TwinCAT licenses.

Future work

- Make additional functionalities available in NICOS software for instrument scientists.
- Synchronization bugs with some parameters not updating after a move on virtual axes.
- Create automated tests for commissioning.
- Install encoders on motion stages without feedback.
- Install limit switches on motion stages that are missing them.

Questions

