Search for the electric dipole moment of the muon at PSI

A. Adelmann,^{1,2} M. Backhaus,¹ C. Chavez Barajas,³ N. Berger,⁴ T. Bowcock,³ C. Calzolaio,² G. Cavoto,^{5,6}
R. Chislett,⁷ A. Crivellin,^{2,8,9} M. Daum,² M. Fertl,¹⁰ M. Giovannozzi,⁸ G. Hesketh,⁷ M. Hildebrandt,²
I. Keshelashvili,¹¹ A. Keshavarzi,¹² K.S. Khaw,^{13,14} K. Kirch,^{1,2} A. Kozlinsky,⁴ A. Knecht,² M. Lancaster,¹²
B. Märkisch,¹⁵ F. Meier Aeschbacher,² F. Méot,¹⁶ A. Nass,¹¹ A. Papa,^{2,17} J. Pretz,^{11,18} J. Price,³ F. Rathmann,¹¹
F. Renga,⁶ M. Sakurai,¹ P. Schmidt-Wellenburg,² A. Schöning,¹⁹ C. Voena,⁶ J. Vossebeld,³ F. Wauters,⁴ and P. Winter²⁰

Philipp Schmidt-Wellenburg (PSI) | PSI-BVR 52 Open User Meeting | 27.01.2021

CP violation & EDM

A brief history of EDM searches

Complementarity of EDM searches

Philipp Schmidt-Wellenburg (PSI) | PSI

BVR52 27.01.2021

PAUL SCHERRER INSTITUT

EFT analysis of contributions to F2 and F3

Effective Hamiltonian:
$$H_{eff} = c_R^{l_f l_i} \bar{l}_f \sigma_{\mu\nu} P_R l_i F^{\mu\nu} + h.c.$$

$$\langle p' | J_{\mu}^{\text{EM}} | p \rangle = \overline{\Psi}(p') \left[F_{1} \gamma_{\mu} + \frac{iF_{2}}{2M} \sigma_{\mu\nu} q^{\nu} + \frac{iF_{3}}{2M} \sigma_{\mu\nu} \gamma_{5} q^{\nu} + \frac{F_{4}}{M^{2}} (q^{2} \gamma_{\mu} - \gamma^{\mu} q_{\mu} q_{\mu}) \right] \Psi(p)$$
charge electric-dipole

$$\delta F_2 = a_{l_i} = -\frac{2m_{l_i}}{e} \left(c_R^{l_i l_i} + c_R^{l_i l_i^*} \right) = -\frac{4m_{l_i}}{e} \operatorname{Re} c_R^{l_i l_i}$$
$$F_3 = d_{l_i} = i \left(c_R^{l_i l_i} - c_R^{l_i l_i^*} \right) = -2\operatorname{Im} c_R^{l_i l_i}$$

Limits on μ EDM in lepton flavor violating models

• EFT phase of Wilson parameter $c_R^{\mu\mu}$ hardly constraint ξ

 μ EDM contribution in electron EDM allows for large value: $d_{\mu} \leq 7.5 \times 10^{-19} ecm$

Hints of new physics

- Decay of B-mesons at LHC Babar and Belle deviate from SM expectation
- Tension in $\tau \rightarrow \mu \nu \nu$
- Cabibbo-angle anomaly might be a indication of LFUV
- Anomalous magnetic moment of muon deviates from SM

A relativistic charged particle in a strong B-field

PAUL SCHERRER INSTITUT

Frozen spin technique for the muon EDM

Philipp Schmidt-Wellenburg (PSI) | PSI -

- BVR52 27.01.2021

Farley et *al.*, PRL93(2004) Adelmann et *al.*, IPG37(2010)

9

Frozen spin technique for the muon EDM

- Cancel anomalous precession with matched E-field: $E \cong aBc\beta\gamma^2$
 - Spin remains parallel on orbit
 - No "contamination" from anomalous spin precession

hmidt-Wellenburg (PSI)

PSI

BVR52

.202

Signal: asymmetry up/downwards tracks with time

- Positron tracker measures up-down asymmetry decay positrons $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$ (V-A asymmetry)
- Same detector measures a_{μ} -precession to tune $E_{\rm f} \cong aBc\beta\gamma^2$

$$A(t) = \frac{N_{\uparrow}(t) - N_{\downarrow}(t)}{N_{\uparrow}(t) + N_{\downarrow}(t)}$$

The slope gives the sensitivity of the measurement:

Philipp Schmidt-Wellenburg (PSI) |

PSI

BVR52

.202

$$\sigma(d_{\mu}) = \frac{\hbar \gamma^2 a_{\mu}}{2P E_{\rm f} \sqrt{N} \, \gamma \tau_{\mu} \, \alpha}$$

P := initial polarization $E_{f} := Electric field in lab$ $\sqrt{N} := number of positrons$ $\tau_{\mu} := lifetime of muon$ $\alpha := mean decay asymmetry$

Muon EDM kick off workshop at PSI 17.02-19.02.2020

Kick-off workshop for the search of a muon EDM using the frozen spin technique at PSI

17-19 February 2020 Europe/Zurich timezone

verview	Mailing List: https://elog.psi.ch/elogs/Muon+EDM+Mailing+List/								
Vorkshop Topics	Remote link: https://psi-ch.webex.com/psi-								
cope of the Workshop	ch/j.php?MTID=mbb1db2d988c4d00d68ec5da10b33ad15 (Muon2020)								
ist of invited speakers	The aim of the workshop is to bring together scientists strongly motivated to participate in a search for								
all for Abstracts	a muon electric dipole moment (EDM) using the frozen spin technique at PSI.								
genda	The workshop will be organized as a topical seminar with break-out sessions addressing the different								
imetable	challenges of a compact muon storage ring employing the frozen spin technique to search for an								
ontribution List	shorter contributions by all participants. We plan for ample discussion time in each session.								
ook of Abstracts	Venue: PSI. West								
egistration fee	Monday: WHGA 001 / Auditorium								
egistration	Tuesday: WBGB 019 Wednesday: WBGB 019								
articipant List									
enue									
ccomodation									
	Starts 17 Feb 2020, 09:00 PSI								

List of invited speakers					
Niel Derger University of Meinz					
Nick Berger, University of Mainz					
Martin Fertl, University of Mainz					
Massimmo Giovannozzi, CERN					
Gavin Hesketh, University College London					
Kim-Siang Khaw, Tsung-Dao Lee Institute and Shanghai Jiao Tong University					
Alexander Nass, Forschungszentrum Jülich					
Nicola Neri, University of Milano					
François Meot, Brookhaven National Laboratory					
Angela Papa, University of Pisa					
Frank Rathmann, Forschungszentrum Jülich					
Peter Winter, Argonne National Lab					

Two concepts for a muon EDM at PSI

Simulation and injection efficiency

mm/ z

750-

30-

0 -

(magnetic adiabatic collimation)

FEM optimization of magnetic field

- Electrodes out of the way
- 3 times better injection efficiency as in the lateral case
- Possible improvement by coupling vertical and horizontal phase space

0.02

-0.02

-0.04

-0.06

0

y' /rad

-30

18

r/mm

Beam line characteristics

Entrance trigger/tagger

- Trigger required for magnetic kick – Combination of scintillator signals (anti
 - coincidence) and machine frequency

- Muon track information for reconstruction

of decay vertex

Positron tracker

- Barrel detector made of pixelated HV Maps silicon sensors (same technology as mu3e)
- Fast exit signal by scintillator (e.g. fibers) to lift veto for entrance

Leptoquarks: A. Djouadi ZPhysC(1989),

- E.C. Leskow PRD95(2017), A. Crivellin arXiv:2010.06593, I. Doršner PRD102(2020)
- New Scalars and Fermions: R. Dermisek PRD88(2013), S. Raby PRD97(2017), K. Kowalska arXiv:2012.15200, M. Endo JHEP08(2020), J. Kawamura PRD100(2019) MSSM: G.Hiller PRD82(2010)

Sensitivity of helix muon EDM

Gamma factor ($p_{\mu}=125 { m MeV}/c$)	γ	1.77		
Initial polarization	Р	0.93		
Electric field ($B = 3T$)	$E_{\rm f}$	2MV/m		
Detection rate		60kHz		
Mean decay asymmetry	α	0.3		
Detections (200days)	N	10 ¹²		
$\sigma = \hbar \gamma a_{\mu} / \left(2P E_{\rm f} \sqrt{N} \tau_{\mu} \alpha \right)$	<	$6 \times 10^{-23} e cm$		

HIMB & MuCOOL phase:

Decay rate probably a factor 100 higher, if prospected beam size (1mm) and divergence (sub mrad) can be maintained in re-acceleration.

Systematic effects due to imperfections

Possible effects

- Radial magnetic field B_r
- Magnetic "plane" does not coincide with Electric "plane"
- Electric field not in one plane
- Different detector efficiencies (spatial or time variations)

Remedies

- Clock and counter clockwise injection (cancels most effects)
- Time binning of positron tracks over multiples of one period ($\sim 4ns$)

Farley *et al.*,

PRL93(2004)

	2021	. 2022	2023	2024	2025	2026	2027	2028	2029	2030
Conceptional design	•	0								
Technical design										
R&D			•							
Construction					2					
Commissioning										
Data taking						3				
Analysis						•			4	
Preparation phase II									•	
Phase II at HIMB/muCool								beyond 20)30	Î

FIG. 25: Tentative schedule for the search of a muon EDM at PSI. Milestones are indicated as black diamonds. M0: Submission of experimental proposal to BVR committee. M1: Submission of technical design report to BVR, M2: delivery of magnet, M3: Start of data taking, M4: Final report of phase I and proposal for measurement at HIMB/muCool.

Conclusion

- The search for the muon electric dipole moment is a unique venue to explore CP-violation in BSM physics
- A search of a muon EDM complements current EDM searches by testing CPV in a second generation lepton, clean of nuclear and atomic background
- This letter of intent proposes to measure the muon EDM using the frozen spin technique in a compact solenoid field at PSI
- A sensitivity of better than

 $d_{\mu} < 6 \times 10^{-23} e \mathrm{cm}$

is expected using existing beamlines

• With the advent of HIMB and muCool an even higher sensitivity is likely in a second phase of the search

