

Beam Dynamics Study for PSI – XFEL Linac

G. Amatuni, R. Balayan, B. Grigoryan*, E. Laziev, A. Vardanyan, V. Tsakanov (CANDLE)

Beam Dynamics Study for PSI -XFEL Linac

- Beam parameters, machine layout
- Beam model for tracking calculations
- Wakefields and correlated energy spread
- Coherent oscillations. Emittance dilution
- Accelerating sections misalignments
- RF phase error
- Conclusion

Beam parameters and machine layout

R. J. Bakker "PSI XFEL Specifications for CANDLE". FEL-BR06-014-2

Beam parameters and machine layout

-		domain Iabel	n*	energy (GeV) target / max		current (kA)
-	electron gun	INEG	-	0.001	0.001	0.0055
(injector	IN	4	0.25	0.35	0.030
	linac-1	10	14	1.5	1.7	0.35
	linac-2	20	24	3.7	4.1	1.5
	linac-3	30	16	5.3	5.7	1.5
	linac-4	40	6	5.8	6.3	1.5

* number of 4-m long S-band accelerating structures

R. J. Bakker "PSI XFEL Specifications for CANDLE". FEL-BR06-014-2

Beam parameters and machine layout

Beam model for tracking calculations

Longitudinal and transverse wake functions for S-Band structure

K. L. Bane, M. Timm, T. Weiland, SLAC-PUB-9798

Transverse and longitudinal point wake functions for S-band structure
$$W_{x} = 4.10 \cdot \left[1 - \left(1 + 1.15[s/mm]^{\frac{1}{2}}\right) \cdot \exp\left(-1.15[s/mm]^{\frac{1}{2}}\right)\right], \left[\frac{V}{pC \cdot mm \cdot m}\right]$$

$$W_{z} = 200 \cdot \exp\left[-0.77(s/mm)^{\frac{1}{2}}\right], \left[\frac{V}{pC \cdot m}\right]$$

Transverse and longitudinal wake potentials of bunch

$$W_{\perp}(s) = \int_{-\infty}^{s} P(s') w_{x}(s-s') ds$$
$$W_{\parallel}(s) = \int_{-\infty}^{s} P(s') w_{z}(s-s') ds'$$

Longitudinal and transverse wake functions for S-Band structure

Induced correlated energy spread in linac

Correlated Energy Spread :

- Interaction with external accelerating RF voltage
- Interaction with accelerating structure wakefields

CANDLE - PSI Collaboration

Correlated energy variation along the linac

CANDLE - PSI Collaboration

Effect of Initial Correlated Energy Spread (BC)

Coherent betatron oscillations. Chromatic Effect.

- Initial transverse jitter – $1\sigma~$ ~ 30 μm

- Initial uncorrelated energy spread (BC20) - 0.1%

CANDLE - PSI Collaboration

Coherent betatron oscillations. Wakefield effect.

Misalignments. Accelerating section

CANDLE - PSI Collaboration

Misalignments. RF phase

Correlated rms energy spread for RF phase (statistic) random error of 5°

Conclusion.

- · Coherent oscillations.
 - Chromatic emittance dilution <0.04%
 - Wakefield emittance dilution <0.003%
- Correlated energy Spread.
 - 0.01% correlated energy spread is achievable
 - Need further optimizations for initial corr. energy spread, RF phase and BC design.
- Accel. Sections misalignments. For 500 μm rms offset rms emittance dilution <0.025%
- For rms RF phase errors 5 degree rms corr. energy spread deviation is <0.005%

- Energy spread in BC10/BC20.
- Parameters for bunch compressors
- Reduce number of FODO cells by factor 2-3

Under Study

- o Quadrupole misalignments and trajectory correction
- o Accel. section tilts.
- o Emittance dilution in low-energy part of S-band accelerator (0.25-1.5 GeV)
- o Optimization of machine performance and beam optics