Part 2: Comparison of measurements and simulations for OBLA-500keV

A.Oppelt FELSI meeting, 11.11.08

General remarks

 a lot of data have been taken, but often major beam parameters are missing (e.g. laser) or the (magnet) settings have been changed within the measurement

 \rightarrow we need to define precise measurement procedures

- machine stability was not great, i.e. often at least the charge changed during the measurements (this was only partly checked / recorded); parameters changed on a day-to-day basis

 → reproducibility issues forbid people to change important elements or settings without agreement; e.g. the laser beamline is a 'holy cow'
- BBA of laser and solenoids was not done and complicates machine operation (i.e. beam steering with current change; additional steerers have to be used)
 → it is mandatory in the future !
- useful measurements (to be reproduced in simulations) of beam sizes and emittances have been done on 22.07. / 18.+19.8. / 22.8. / 2.+3.10.

OBLA 500keV setup

Notes:

- 1. It's more convenient to use the anode as reference position !
- 2. Positions in the emittance meter are not very precisely defined. (reproducibility within a few mm)

Normalized emittance results

Issues: measurement vs. simulation

Measurement:

- apply different emittance calculation algorithms to the data to verify stability of XanaROOT algorithms
- need to cross-check XanaROOT results with simulations to verify emittance results (simple PPT model now implemented in OPAL)
- YAG1 resolution: 50...100 μ m / YAG2 resolution: ~12 μ m
- positioning reproducibility of YAG2 and PPT: few mm

• ...

Simulation:

- anode hole (aperture) vs. laser distribution cut
- Used cathode-anode field profiles do partly not correspond to reality ('simplified simplified' = flat cathode vs. new design)
- halo in simulation vs. reality (i.e. depending on camera settings ?)

•

200

IND1-SCA charge = 12537786 (arb.units

22.7.2008 electrodes: SS hand-polished, after breakdowns pulser: 313 kV, 7 mm \rightarrow 44.7 MV/m laser: Duettino, $\sigma_x = 330 \ \mu\text{m}, \sigma_y = 370 \ \mu\text{m}$ charge: 19.0...20.8 pC solenoids (A): 28.7/15/10/38/0 YAG1: z = 491 mm, $\sigma_x = 1.5 \ \text{mm}, \sigma_y = 1.3 \ \text{mm}$ YAG2: z = 773 mm, $\sigma_x = 494 \ \mu\text{m}, \sigma_y = 435 \ \mu\text{m}$ PPT: z = 743 mm, $\sigma_x = 0.47 \ \text{mm}, \sigma_y = 0.37 \ \text{mm}, \epsilon_x = 0.86 \ \mu\text{m}, \epsilon_y = 0.89 \ \mu\text{m}$

further emittance measurements with changed magnet settings

in addition to emittance measurements: envelope scan on YAG2 between z = 773...953 mm

Problems: - no statistics for error estimation of beam size measurements ×

- beam size measurement at PPT position using PPT image may underestimate $\boldsymbol{\epsilon}$
- halo in simulation vs. reality (may show up, depending on camera settings)

Conclusion: We need much more simulations to understand our emittance measurements !

Pixel No.

OPAL simulation vs. measurement data

— optimization M.Dietl
— envelope scan settings

- emittance measurements

22.8.2008 electrodes: fresh OFE Cu 01/04, diamond-turned by Kugler, no breakdowns laser: Jaguar, 2mm pinhole, 17 µJ (stable !), $\sigma_x = 210 \ \mu m$, $\sigma_y = 240 \ \mu m$ charge: 15...28 pC (QE increase with time ?!) / 54 pC pulser: 200...400 kV, 6 (8) mm \rightarrow 25...60 MV/m

 \rightarrow measured and calculated (by XanaROOT) beam sizes agree quite well

 \rightarrow they are also not far from the expected values (including global behaviour)

 \rightarrow but: calculated emittances are mostly far away from simulated values

2.10.2008 electrodes: fresh SS A12-A25, mirror polished, no breakdown pulser: 300 kV, 6 mm \rightarrow 50 MV/m laser: Jaguar, 2 mm pinhole, 35 µJ, σ_x = 199 µm, σ_y = 205 µm charge: (40 ± 7) pC

emittance data cannot be analyzed, data is lost !

envelope scan (no focus):

solenoids (A): 26.5/29/29/25/35 YAG1: z = 491 mm, σ_x = (1241±68) µm, σ_y = (1275±53) µm YAG2: z = (783+3) mm, σ_x = (629±15) µm, σ_y = (452±13) µm

envelope scan (focus in emittance meter): solenoids (A): 26.5/29/15/20/30 YAG1: z = 491 mm, σ_x = (2274±112) µm, σ_y = (1795±72) µm YAG2: z=763...1113 mm (+4mm position error)

 $\begin{array}{l} \textbf{3.10.2008}\\ \textbf{a} \mbox{ electrodes: fresh SS A12-A25, mirror polished, no breakdowns pulser: 300 kV, 6 mm \rightarrow 50 MV/m \\ \mbox{ laser: Jaguar, 2 mm pinhole, 17 \mu J, } \sigma_x = 193 \ \mu m, \sigma_y = 199 \ \mu m \\ \mbox{ charge: 20 pC} \\ \mbox{ YAG1: } z = 491 \ mm, \\ \sigma_x = (995\pm28) \ \mu m, \\ \sigma_y = (713\pm23) \ \mu m \end{array}$

solenoids (A) for **large beam on YAG2**: 21/45/0/0/0 YAG2: $z = (773+4) \text{ mm}, \sigma_x = (857\pm13) \mu\text{m}, \sigma_y = (502\pm5) \mu\text{m}$ PPT: $z = (773-1) \text{ mm}, \epsilon_x = ??? \mu\text{m}, \epsilon_y = ??? \mu\text{m}$

very nice data for systematic studies, but PPT images lost

solenoids (A) for **focus on YAG2**: 21/45/0/0/42 YAG2: z = (773+3) mm, $\sigma_x = (464\pm6) \mu$ m, $\sigma_y = (396\pm5) \mu$ m PPT: z = (773-0) mm, $\varepsilon_x = ??? \mu$ m, $\varepsilon_y = ??? \mu$ m

after moving laser mirror by 5.9 mm into the beam: YAG2: z = (773+2) mm, σ_x = (449±5) µm, σ_y = (397±5) µm PPT: z = (773-2) mm, ε_x = ??? µm, ε_y = ??? µm

Simulation results: MSL50 off vs. MSL50 on

OPAL simulation results vs. envelope data

Conclusions

- first quick OPAL simulation without parameter tuning was compared to measurement data
- beam size development fits reasonably well
- emittance data and simulations show no relation; simulation as well as data analysis have to be improved

OPAL: laser, diode, PPT XanaROOT: algorithm, stability

There is still a long way to go to understand our machine !!!