

A Taste of CAFE

Jan Chrin

FELSI Meeting, 09/12/08

CAFE (Channel Access interFacE):

A new C++ library for remote access to EPICS data

Outline

 Why CAFE?

Code Listings

Synchronous Messages

Operations on Groups/Collections

Monitors

CAFE Applications

Further Developments

Summary

Channel Access (CA)

Dedicated EPICS Protocol providing remote access to records and fields residing
on the Input/Output Controller (IOC)

Protocol optimized for transfer of large amounts of small data packets

Client

 I
O
C

CA Client Library

=> Initialize CA to receive IOC broadcast messages
=> Client search for Process Variable (PV)
=> Once host containing the requested PV
 responds client establishes a “virtual circuit”
=> “Channel” is created (over virtual circuit) between
 server and client thru which the PV is accessed
=> All subsequent messages sent thru virtual circuit
=>
=> Close CA connection

Process Variable (PV):
single value within EPICS host

Standalone CA Clients: Alarm Handler, Archiver,
Motif Editor and Display Manager (MEDM), StripTool, ...

channel access

Channel Access APIs

For High-Level Application development, several APIs simplify task of accessing
controls data through user-friendly (and simple) interfaces to the native CA library

EPICS Extensions

 C EZCA: EaZy Channel Access -> simple interface
 C++ CDEV: Common DEVice -> abstract layer to CA, enhanced features

Interface for several other programming languages:

Java, Tcl, Python...

and 4th generation languages:

IDL (EZCA), MATLAB...

EPICS / Channel Access Releases

Only basic CA changes over 10 years guarantee compatibility between old
and new client/server connections! Important for sites with legacy systems

Many extensions NOT rigorously maintained and often do not reflect recent
advances in channel access (multithreading and handling of lost connections)

EPICS 3.12

19
95

19
96

19
97

19
98

19
99

20
00

EPICS 3.13.1-3.13.10

EPICS 3.14.1-3.14.10

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

CA_VXX

CA_Library CA_VXX

New CA Lib

deprecated

E
Z

C
A

, C
D

E
V

CAFE: an in-house API

Functionality for both synchronous and asynchronous interactions, i.e. monitors
for individual channels and groups or collections of channels

Hooks into new CA functions

Allows to stay in step with EPICS releases

Presents an opportunity to develop interfaces that are a
better match for beam dynamics applications

CAFE provides a multifaceted interface to the new CA functions released with
EPICS 3.14 and is tailored towards needs of scientific applications

 #include <cafe.h>

 int main(int argc, char ** argv) {

CAFE cafe;
char st[40]=”1.1”; double d;
long l[2]={1,2}; float f[2];

 cafe.init(); // Initialize CA

try{
// set/get
cafe.set(“F-CALC”,CA_STRING, 1,st);
cafe.get(“F-CALC”,CA_DOUBLE, 1,&d);
// set/get 2 elements of a waveform

 cafe.set(“F-WF1” ,CA_LONG, 2, l);
cafe.get(“F-WF1” ,CA_FLOAT, 2, f);

}
catch(CAFEException &e){

cafe.printException(e);
}

 //Release CA resources

cafe.terminate();
}

Synchronous Operations with Explicit Data Types

Process Variable (PV)

CAFE Data type

No. elements

Data

CAFE Primitive Data Types
C++

CA_STRING char[40]
CA_SHORT short
CA_FLOAT float
CA_ENUM unsigned short
CA_CHAR unsigned char
CA_LONG long
CA_DOUBLE double

 #include <cafe.h>

 int main(int argc, char ** argv) {

CAFE cafe;
char st[40]=”1.1”; double d;
long l[2]={1,2}; float f[2];

 cafe.init(); // Initialize CA

try{
// set/get String
cafe.setString(“F-CALC”, st);
cafe.getString(“F-CALC”, st);
// set/get Double

 cafe.setDouble(“F-CALC”, d);
cafe.getDouble(“F-CALC”, &d);

}
catch(CAFEException &e){

cafe.printException(e);
}

 //Release CA resources

cafe.terminate();
}

Synchronous Operations with Implicit Data Types

Process Variable (PV)

 Data type is Implicit

No. elements=1 is implicit

Data

cafe.setFloat(“”, f)

cafe.getLong (“”, &l)

cafe.setShort(“”, s)

cafe.getEnum (“”,&us)

cafe.setChar (“”, uc)

 #include <cafe.h>

 int main(int argc, char ** argv) {

CAFE cafe;
char st[2][40]={”1.1”,”2.2”};
double d[2]={1.0,2.0};

 cafe.init(); // Initialize CA

try{
// set/get String
cafe.setStringN(“F-WF1”, 2, st);
cafe.getStringN(“F-WF1”, 2, st);
// set/get Double

 cafe.setDoubleN(“F-WF1”, 2, d);
cafe.getDoubleN(“F-WF1”, 2, d);

}
catch(CAFEException &e){

cafe.printException(e);
}

 //Release CA resources

cafe.terminate();
 }

Operations on Waveforms with Implicit Data Types

Epics channel name

 Data type is Implicit

No. elements

Data

cafe.setFloatN(“”,n,f)

cafe.getLongN (“”,n,l)

cafe.setShortN(“”,n,s)

cafe.getEnumN (“”,n,us)

cafe.setCharN (“”,n,uc)

long n=512

 struct PVGroup {

char name[40];
 unsigned short npv;

long statusGroup;
PVDatum * pvdata;

 }

 struct PVDatum {
char pv[40];
char attrib[20];
CA_DATATYPE dbrType;
unsigned long nelem;

 long status;
long rule;
DBR_DATATYPE_UNION * val;

 }

 union DBR_DATATYPE_UNION{
char str[40];
short s;
float f;
unsigned short us;
unsigned char ch;

 long l;
double d;

 }

Aggregation of Channels into Groups

Several request delivered with
one method invocation, hence
greater efficiency

All data pertaining to a group are
encapsulated within the CAFE
defined data type PVGroup

Useful for
-> snapshot of selected machine data
-> group related devices (e.g. Magnets,
BPMs, rf cavities, etc.) into collections

PVGroup pvgroup;
//Fill pvgroup dynamically
...
//Take snapshot
cafe.getGroup(&pvgroup);

 <cafe::config xmlns:cafe=”http://xfel.web.psi.ch/ns”>

<cafe::group id=gVarious1>

<cafe::description> snapshot </cafe::description>
 <cafe::statusGroup> ECA_NORMAL </cafe::statusGroup>

// Complete form
<cafe::member>

<cafe::name> F-CV-01:I-SET </cafe::name>
<cafe::nelem> 1 </cafe::nelem>
<cafe::status> ECA_NORMAL </cafe::status>
<cafe::rule> True </cafe::rule>
<cafe::dbrType> CA_DOUBLE </cafe::dbrType>

</cafe::member>

// Minimal form
<cafe::member>

<cafe::name> F-CV-02:I-SET </cafe::name>
<cafe::dbrType> CA_DOUBLE </cafe::dbrType>

</cafe::member>

 </group>

 </cafe::config>

The XML Configuration File for Groups

 #include <cafe.h>

 int main(int argc, char ** argv) {

 CAFE cafe;
 PVGroup pvgroup;

 cafe.init(); // Initialize CA
 cafe.loadGroups(“cafeGroups.xml”);

 pvgroup =cafe.getPVGroup(“gVarious1”);

 try{
// Snapshot of group members
cafe.getGroup(&pvgroup);

}
catch(CAFEGroupException &ge){

cafe.printExceptionSeq(
ge.pvgroup.npv, ge.es);

pvgroup=ge.pvgroup; //recover data
delete []ge.es; //release memory

}

 //Release CA resources
 cafe.terminate();
 }

Synchronous Operations on Groups

Parses
XML configuration file

Retrieves members
for group “gVarious1”

getGroup (or setGroup)

PVGroup struct single
input/output argument

Failed operation
Status for each individual
group member is returned

 Collections of related devices

● Group: an aggregation of unrelated channels

● Collection: an aggregation of devices of the same
type, e.g. magnets, BPMs, rf cavities...

● CAFE collection “internally” collapses to a group
and uses the “group” methods with the PVGroup
struct as single input/output argument

● However, user interface to collections is much
simpler!

Device:Attribute Paradigm

MAG-Q1:I-SET
MAG-Q1:I-READ
MAG-Q2:I-SET
MAG-Q2:I-READ
MAG-Q3:I-SET
MAG-Q3:I-READ

Related devices can
be grouped to form a
collection, e.g. “cMAG-Q”
from members
MAG-Q1, MAG-Q2, MAQ-Q3

EPICS Records

Attributes are named
parameters belonging
to a device

cafe.operation(“cMag-Q”, “I-SET”, CA_DOUBLE, d[3]);

pointer to data

 Collection: a single logical software entity

● Collections first introduced by CDEV (1995)

● However if an operation of just one member of a collection
failed, no diagnostics on the individual members would be
returned!

● CAFE collection differs in two ways:

● operations are sent and a status returned for all members
of the collection

● introduction of a rule flag, allows member of the collection
to be withdrawn at any time -> client able to respond
dynamically to changes in the operating conditions

 <cafe::config xmlns:cafe=”http://xfel.web.psi.ch/ns”>

<cafe::group id=cCV>

<cafe::description> Vert. Correctors </cafe::description>
 <cafe::statusGroup> ECA_NORMAL </cafe::statusGroup>

// Only “device” portion of epics record name entered
<cafe::member>

<cafe::name> F-CV-01: </cafe::name>
</cafe::member>
<cafe::member>

<cafe::name> F-CV-02: </cafe::name>
</cafe::member>
<cafe::member>

<cafe::name> F-CV-03: </cafe::name>
</cafe::member>

 </group>

 </cafe::config>

The XML Configuration File for Collections

 #include <cafe.h>

 int main(int argc, char ** argv) {

 CAFE cafe; double dVal[3];
 bool rule[3]={true,true,true};

 cafe.init(); // Initialize CA
 cafe.loadGroups(“cafeGroups.xml”);

 try{
cafe.getCollection(“cCV”,”I-SET”

CA_DOUBLE, dVal, rule);
rule[2]=false;
for (int i=0; i<3; ++i) dVal[i]+=0.1;
cafe.setCollection(“cCV”,”I-SET”

CA_DOUBLE, dVal, rule);
}
catch(CAFEGroupException &ge){

pvgroup=ge.pvgroup; //recover data
delete []ge.es; //release memory

}

 cafe.terminate(); //Release CA resources
 }

Synchronous Operations on Collections

Parses
XML configuration file

Collection name

Remove 3rd element
from collection and
increment I-SET

Failed operation
Status for each individual
collection member is
returned

Asynchronous Operations

Monitors
- preferred when data changes infrequently
- can be established/removed on individual

channels or groups/collections of channels

Requires client to provide a callback function that is invoked
whenever the monitored value changes; callback fn can then
update local variable or redraw a GUI component

CAFE provides a “generic” callback fn that when triggered
inserts the updated value into multimap containers; an
independent thread initiates an action in response to a given
triggered event

 #include <cafe.h>
 #include “cafeCallback.h”

 int main(int argc, char ** argv) {

 CAFE cafe; evid * pEv1, pEv2; evid pEvid[6];
Pcallback cb; pCallback usc[6];

 cafe.init(); // Initialize CA
 Try{

//start monitors
 cafe.startMonitor(“CALC1”, CA_STRING, cb, pEv1);

cafe.startMonitor(“FIND1-SCA:data”, CA_CHAR, 786432, cb, pEv2);
cafe.startCollectionMonitor

(“cCV”, ”I-SET”,CA_DOUBLE, rule, usc, (evid &) pEvid);

//stop monitors
cafe.stopMonitor(“FIND1-SCA:data”);
cafe.stopMonitor(pEvid[2]);
cafe.stopCollectionMonitor(“cCV”,”I-SET”,rule);

}
catch(..){} //CAFEException; CAFEGroupException;

// CAFECollectionException
 cafe.terminate(); //Release CA resources
 }

Asynchronous Operations

 Applications with CAFE

● For use in C++ frameworks, e.g. ROOT

● Basis for event processing agents (*)

e.g. capture machine data for

(i) storage e.g. RDB or HDF

(ii) inter-shot analysis: 10ms

(*) Complex Event Processing: Defined set of tools/techniques
for analyzing and controlling events

 Event Processing Agents (EPA)

reactive rules that trigger on in events
to create out events

and change local state variables

input output

EPA

Events
triggering agent

Events
created by agent

EPA: event pattern rules, comprised of a trigger and body of actions
 and local variables whose values form its state

Generic interface to an EPA class

Agent Interface Specification
 (Event Pattern Rules)

1. Monitor input

2. Detect instances of rule trigger
3. Match detected, agent executes the action of the rule's body

4. Output event

 Agent for Data Aggregation and Analysis

Data Aggregation and Analysis

CAFE Callback

Output Event

Channel accessDevice Layer

Analysis Layer

RDB or HDF Talk to Agents?

can be effective in understanding what is happening within a system,
and enhance operation and performance (e.g. feedback systems),
identify (and solve) problems

class EPA_Class_Name
in input_execution_type
out output_execution_type {

 Event Pattern Rules
 (Trigger, body of action)

 Local Variables

} EPA_Class
Filter
Map
Constraints

run continually on server rather than on demand

 Further Developments

● Improve current interface, add new functionality in
response to user requests

● XML schema to validate both the syntax and content
of the XML configuration file

● Implement event processing agents at OBLA 4

e.g. to capture machine data for storage or inter-shot
analysis

--> test CAFE bandwidth for monitors: shared memory
access for maximal performance

Summary

CAFE: a new “in-house” C++ library for remote access
to EPICS data

Build on latest CA functions (multithreaded) providing
both simple interfaces and structured interfaces for
more demanding clients

New software techniques
for

New particle accelerators!

Acknowledgements

● Thomas Schietinger

Coining CAFE and testing with ROOT

cafns -> CAFE (Channel Access interFacE)

● Benedikt Oswald

Automake: generates makefiles to compile and install CAFE

● Mirek Dach

Soft channels for code development

● Dirk Zimoch

Matters EPICS

A Taste of CAFE?

v. 1.0.0Beta available

/fel_home/felop/cafe/lib (SL5)

“A Taste of CAFE”
internal note (draft)

includes Makefiles linking
CAFE and EPICS libraries

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

