

Thermal Emittance in OPAL

February 3, 2009

Thermal Emittance in OPAL

Model [Flöttmann 1997, Clendenin 2000]

$$P(E_f, E_{ph} = \hbar\omega) \propto N_f(E_f) N_i(E_f - E_{ph} = \hbar\omega) \text{ with}$$
(1)

- $P(E_f, E_{ph} = \hbar \omega)$: probability for a photon of energy E_{ph} exiting an electron to a final state energy E_f .
- $N_f(E_f)$ is the density of final state
- $N_i(E_f E_{ph})$ is the density of initial state
- Two cases, no-scattering (non-equilibrum) and scattering (equilibrium, e-e and e-phonon collisions) can be distinguished.
- A uniform radial distribution is assumed hence: $x_{rms} = \frac{r}{2}$.

Non-Equilibrum case

Photoemission from a metal involves fist the absorption of a photon with:

$$\hbar\omega > \Phi_e \tag{2}$$

where $\Phi_e = \Phi - \Delta$ is the reduced work function. The reduction is a function of the applied electric field E_c :

$$\Delta = e\sqrt{eE_c/4\pi\varepsilon_0}.$$
(3)

Electrons are emitted isotropic into the half-sphere with: $E_{kin} = \varepsilon_f + \hbar \omega$. Particles with angel φ larger than $\varphi_{max} = \arccos \sqrt{(\varepsilon_f + \Phi_e/E_{kin})}$ will pass the potential barrier.

$$p_x = p \sin \varphi \cos \theta, \ \varphi = [0 \dots \varphi_{max}], \ \theta = [0 \dots \pi]$$
 (4)

and

$$p = m_0 c \sqrt{\gamma^2 - 1}.$$
 (5)

Thermal Emittance in OPAL

Input Parameters for the simulation

- r_{rms} or distribution form virtual cathode!
- Cu, Fe, Cs2Te $\rightarrow \Phi, \varepsilon_f$
- Laser: $\hbar\omega$
- Electric field: E_c Schottky effect

Question(s)

• Same model for Cu, Fe and Cs2Te?

no-scattering

Electrons are emitted isotropic into the half-sphere: $E_{kin} = E_f - E_{Gap}$ Particles with angel φ larger than $\varphi_{max} = \arccos \sqrt{(E_A/E_{kin})}$ will pass the potential barrier. E_A is the electron affinity $(E_A = E_T - E_{Gap})$.

$$p_x = p \sin \varphi \cos \theta, \ \varphi = [0 \dots \varphi_{max}], \ \theta = [0 \dots \pi]$$
 (6)

and

$$p = m_0 c \sqrt{\gamma^2 - 1}.\tag{7}$$

scattering

Electrons are emitted isotropic into the half-sphere: $E_{kin} = E_f - E_{Gap} - E_A$ with angel φ larger than $\varphi_{max} = \pi/2$.

Thermal Emittance in OPAL

K. Flöttmann, Note on the thermal emittance of electrons emitted by Cesium Telluride photo cathodes TESLA FEL-Report, 1997-01.

Reduction of thermal emittance of RF guns NIM A, 455 (2000) 198-201.