OBLA Simulations: OPAL vs ASTRA

Thomas Schietinger, PSI FELSI Meeting, 5 May 2009

Content

- Motivation / history
- LEG geometries
- Comparison OPAL/ASTRA
 - For one working point, with current geometry/laser
- OPAL optimizations for Ti:Sapph laser
 - For all geometries
 - But only for elliptical electrodes (as currently installed)

Motivation / history

- OBLA retreat: both KL and TS who simualtions for Ti:Sapph laser (200 pC, flat-top with 9.9 ps FWHM) produced electron beam at OBLA
- KL (ASTRA): 0.8 mm mrad for currently standard elliptical electrodes, 0.4 mm mrad for specially designed "nose" electrodes
- TS (OPAL): ~4 mm mrad for elliptical electrodes
- Where does the difference come from?
 - different codes (OPAL vs ASTRA)
 - different geometries?
- Purpose of this meeting to sort out the difference!

LEG geometry as is now

LEG geometry as is now

LEG geometry as is now

LEG geometry according to drawing on the web

 puls
Standing Distance anode-cavity: 150 mm 580 50 770

LEG geometry as designed once

LEG geometry as designed once

LEG geometries: summary

Three geometries have been considered:

For the OBLA-ASTRA comparison, use the geometry corresponding to the current reality (166 mm drift), with the current laser (JAGUAR)

Working point 1 (166 mm drift geometry)

	low charge	high charge
Bunch charge:	10 pC	100 pC
Laser spot diameter:	0.6 mm	1.4 mm
Laser $\sigma_{\rm t}$		14.8 ps
Pulser voltage:		300 kV
Pulser gap:		6 mm
Pulsed solenoid:	145 mT	144 mT
RF phase:	~on-crest (adjustable)	
RF gradient:		42 MV/m
Double sol. 10	120 mT	121 mT
Double sol. 20		90 mT

Use these two points for OPAL/ASTRA comparison!

Known differences OPAL-ASTRA

	OPAL	ASTRA
General:		
Tracking:	3D	2.5D
Mirror charges at emission:	yes	yes
Wakefields:	no	no
Specific (this simulation):		
Mesh	32x32x64	20x20x30
Number of particles:	100k	2k
Time step (diode):	0.1 ps	0.1–1 ps
Time step (beamline):	1 ps	0.1–1 ps
Energy bins at emission:	10	1
Longitudinal emission energy:	1 eV	1 eV
Transverse emission energy:	0 eV	0 eV
i.e. no thermal emittance	!	

Fieldmaps are exactly the same!

Fieldmap for pulsed solenoid

OBLA pulsed solenoid: simulated and measured field

- For "working point 1" with 10 pC
- Elliptical electrodes
- Current lattice (166 mm drift between anode and RF cavity)
- Jaguar laser (Gaussian profile, $\sigma_{\rm t}$ = 14.8 ps)
- RF phase in OPAL adjusted to match ASTRA curves

- For "working point 1" with 10 pC
- Elliptical electrodes
- Current lattice (166 mm drift between anode and RF cavity)
- Jaguar laser (Gaussian profile, $\sigma_{\rm t}$ = 14.8 ps)
- RF phase in OPAL adjusted to match ASTRA curves

- For "working point 1" with 100 pC
- Elliptical electrodes
- Current lattice (166 mm drift between anode and RF cavity)
- Jaguar laser (Gaussian profile, $\sigma_{\rm t}$ = 14.8 ps)
- RF phase in OPAL adjusted to match ASTRA curves

- For "working point 1" with 100 pC
- Elliptical electrodes
- Current lattice (166 mm drift between anode and RF cavity)
- Jaguar laser (Gaussian profile, $\sigma_{\rm t}$ = 14.8 ps)
- RF phase in OPAL adjusted to match ASTRA curves

OBLA 4 MeV, 6 mm, 300 kV, working point 1 (100 pC)

Conclusion: OPAL/ASTRA comparison

- For the OBLA setup, when using the same geometry, the two codes give very similar results
- The differences can probably be attributed to differences in the emission process.
 - Would take more effort to find out is it worth it?
- In any case the differences seem irrelevant for OBLA
 - Agreement within a few percent
 - The problems are elsewhere!

Ti:Sapph optimizations

- Ti:Sapph laser: flat-top longitudinal profile with 9.9 ps FWHM and 0.7 ps rise and fall time
- 200 pC charge (~20 A), 1.08 mm laser spot diameter
- Optimization = adjustment of solenoid strengths and RF phase to get lowest emittance between 2 and 3 meters distance (range covered by the emittance monitor)
 - Pulser gradient constant at 400 kV / 4 mm = 100 MV/m
 - RF gradient constant at 50 MV/m
- Do this for the three geometries: 120, 150 and 166 mm drift between anode and RF cavity

Ti:Sapph laser 166 mm drift

- Elliptical electrodes
- Current lattice (166 mm drift between anode and RF cavity)
- Ti:Sapph laser (flat-top profile, FWHM = 9.9 ps, t_{rise} = 0.7 ps)
- Smallest projected emittance is about 9 mm mrad
- Pulsed solenoid: 170 mT

Ti:Sapph laser 150 mm drift

- Elliptical electrodes
- Current lattice (150 mm drift between anode and RF cavity)
- Ti:Sapph laser (flat-top profile, FWHM = 9.9 ps, t_{rise} = 0.7 ps)
- Smallest projected emittance is 1.4 mm mrad
- Pulsed solenoid: 194 mT

OBLA 4 MeV, 4 mm, 400 kV, TiSa laser (200 pC)

Ti:Sapph laser 120 mm drift

- Elliptical electrodes
- Current lattice (120 mm drift between anode and RF cavity)
- Ti:Sapph laser (flat-top profile, FWHM = 9.9 ps, t_{rise} = 0.7 ps)
- Smallest projected emittance is 0.55 mm mrad
- Pulsed solenoid: 225 mT

OBLA 4 MeV, 4 mm, 400 kV, TiSa laser (200 pC)

Growth in energy spread?

Conclusion: Ti:Sapph optimization

Minimum reachable emittance between 2 and 3 m, in mm mrad:

Cathode shape	Drift distance from anode to cavity:			
	120 mm	150 mm	166 mm	
Elliptical cathode:	0.55	1.4	9.0	
Nose cathode:	0.4?	?	?	

Nose cathode simulations not yet done with OPAL (problem with fieldmap) – see Kevin's ASTRA simulations!

Conclusion: Ti:Sapph optimization

- Emittance extremely sensitive to drift distance in front of cavity
 - The longer the drift distance, the less focusing we can apply with the pulsed solenoid
- With standard elliptical cathodes ("doorknobs") cannot expect emittance below 1 mm mrad for drift distance around 150 mm (at 20 A current).
- Only shortened drift distance, or redesigned cathode (or, better, both) can give a substantial reduction in emittance.
 - Huge effort needed to get down to 0.4 mm mrad (where we start to *compete* with the RF photo-injector...)
- At lower current, the emittance becomes correspondingly smaller
 - $\varepsilon(\lambda)$ still makes sense to measure!

