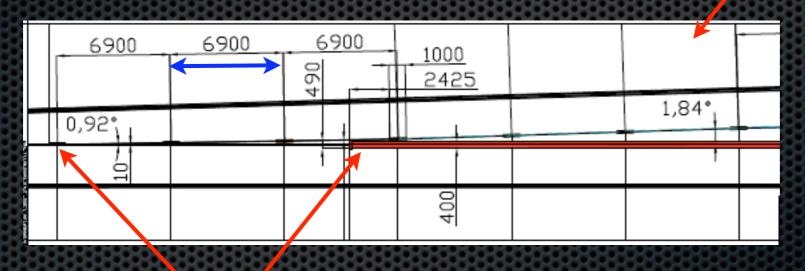

Design of the PSI-XFEL switchyard Natalia P. de Abreu FELSI meeting May 12th, 2009

Outline

- Switchyard concept:
 - Constrains 2 or 3 bends?
 - Input and Output parameters (matching);
- Other Labs switchyards:
 - European XFEL and
 - LCLS;
- Tools available;
- Final Remarks.

Constrains: Geometry and available space


Begin of the first switchyard (3.4 GeV)

Separation of the beamlines at the experimental stations must be around 6-7 m

Constrains: Geometry and available space

distance between elements total deflection 6.9 m

Minimum deflection angle this is due to the accelerating structure for the main line which comes after the switchyard

2 or 3 bends?

2 Bends:

- Simplicity;
- Achromat but not Isochronous;
- Use of the smallest possible angles -> reduces the damaging effects cause by ISR and CSR.

Bends:

- More prone to have problems due to radiation since the angles are bigger and we have more bends;
- Achromat and Isochronous and
- Flexibility to adjust R₅₆.

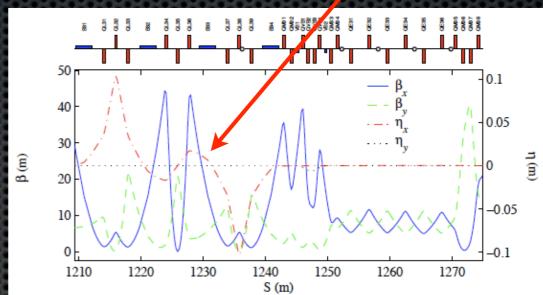
Input and Output parameters:

INPUT:

- Energy: 3.4 GeV
- sigma x/y (µm): 37.9/18.8
- normalized emittance (µm rad): 0.463/0.346
- bunch length (µm):
 9.196
- energy spread:

- OUTPUT (tolerances):
 - Average beta functions: 9 m
 - How much bunch lengthening?
 - Emittance growth?
 - etc...

European XFEL switchyard


Energy = 17.5 GeV

- Switchyard: Double bend + magnetic chicane (necessary to compensate for negative R₅₆);
- They need sextupoles to correct for chromatic effects;
- Main problems/concerns:
 - Allow for a high energy acceptance (2%);
 - Microbunch instability in the bends;
- Work in progress:
 - section is not isochronous (R₅₆ is not zero) and chromatic properties need more study.

two Chasman-Green cells R56=0 and T566 \approx 73 mm

REQUIREMENTS:

- Not alter the bunch length;
- precise energy measurement capability and
- precise transverse emittance and matching diagnostics.

Parameter	Symbol	Unit	Value
Nominal high-end beam energy	Е	GeV	14.35
Total horizontal beamline inflection	Δx	m	0.45
Total vertical beamline angle change (sets a level undulator)	$\Delta \theta_y$	deg	0.30
Nominal rms bunch length throughout dog-leg	σ_{z}	μm	22
RMS core relative energy spread (14.35 GeV)	σ_{δ}	%	<0.02
RMS uncorrelated energy spread (14.35 GeV, with wiggler)	$\sigma_{\delta_{\!$	10-4	8
Net momentum compaction	R ₅₆	mm	0
Net second order momentum compaction	T ₅₆₆	mm	5
Length of each of four horizontal dipole magnets	L_H	m	2.62
Length of each of two vertical dipole magnets	L_{ν}	m	0.4
Bend angle of each of 4 horizontal dipoles	$ \theta_{H} $	deg	0.65
Bend angle of each of 2 vertical dipoles	$ \theta_{\nu} $	deg	0.15
Magnetic field of each horizontal dipole (at 14.35 GeV)	$ B_H $	kG	2.07
Magnetic field of each vertical dipole (at 14.35 GeV)	$ B_{\nu} $	kG	3.13
Maximum horizontal dispersion	$\eta_{\rm max}$	m	0.103
Emittance dilution due to ISR (at $\gamma \varepsilon_0 = 1 \ \mu m$)	$\Delta \epsilon_{ISR}/\epsilon_0$	%	0.8
Projected emittance dilution due to CSR (at $\gamma e_0 = 1 \ \mu m$)	$\Delta \varepsilon_{\rm CSR}/\varepsilon_0$	%	8
RMS ISR relative energy spread (at 14.35 GeV)	$\sigma_{\delta ISR}$	10-4	0.05
RMS CSR relative energy spread (at 14.35 GeV)	$\sigma_{\delta { m CSR}}$	10-4	4.7

Tools available

- For the lattice evaluation:
 - TRACY and MAD-X both have the PTC algorithms built in so the tracking is always symplectic;
 - I decided for MAD-X since it is more widely used and the there is some documentation available.
- For evaluation of CSR effects:
 - Need help with the simulations using Elegant/ TraFiC4.

Final Remarks

- How to attack the problem:
 - Simple lattice using only dipoles+quads;
 - Evaluate non-linear effects and radiation (ISR and CSR);
 - Modify lattice to include more realistic elements (field errors, alignments errors, septum, etc...);
 - Re-evaluate non-linear and radiation effects in this more realistic model and optimize it (introduce sextupoles, etc...).
- Suggestions, critics and advices are welcome.