
A Fast Parallel Poisson Solver on Irregular Domains
Applied to Beam Dynamic Simulations

Yves Ineichen∗,∗∗

Andreas Adelmann∗∗

Peter Arbenz∗

∗Federal Institute of Technology
Department of Computer Science

Universitaetsstrasse 6, CH-8092 Zuerich, Switzerland
∗∗Paul Scherrer Institute

Accelerator Modelling and Advanced Simulations
CH-5234 Villigen, Switzerland

31st August 2009

Y. Ineichen ICAP 2009 31st August 2009 1 / 24

Outline

1 Motivation

2 Solver

3 Boundary Conditions

4 Results

5 Summary

Y. Ineichen ICAP 2009 31st August 2009 2 / 24

Outline

1 Motivation

2 Solver

3 Boundary Conditions

4 Results

5 Summary

Y. Ineichen ICAP 2009 31st August 2009 3 / 24

Self Force Calculation

Self Forces in the Electrostatic Approximation
Whenever we have a number of moving charged particles:

electric fields caused by Coulomb repulsion are present
magnetic fields arising from the moving particles

Both effects act as forces on to the particles! e−

e−

Express the Coulomb potential φ in terms of charge densities ρ (proportional
to the particle density)

∇2φ = − ρ

ε0
.

E = −∇φ.

The magnetic field can be calculated from the electric field (Lorentz
transformation).

Y. Ineichen ICAP 2009 31st August 2009 4 / 24

Self Force Calculation

Particle-in-cell (PIC) Method in N-body Simulations

interpolate individual particle charges to the grid
solve the Poisson equation on the mesh in a Lorentz
frame
typically faster O(n log n) than Particle-Particle
method O(n2)

Finite difference scheme leading to a set of linear equations

Ax = b,

b denotes the charge densities on the mesh
Integrated into code tracking relativistic particles in time

Y. Ineichen ICAP 2009 31st August 2009 5 / 24

OPAL in a Nutshell

OPAL is a tool for charged-particle optics in large accelerator structures and
beam lines including 3D space charge

Some of the features
OPAL is built from the ground up as a parallel application exemplifying
the fact that HPC (High Performance Computing) is the third leg of
science, complementing theory and the experiment
OPAL runs on your laptop as well as on the largest HPC clusters
OPAL uses the MAD language with extensions
OPAL (and all other used frameworks) are written in C++ using
OO-techniques, hence OPAL is very easy to extend.
Documentation is taken very seriously at both levels: source code and
user manual (http://amas.web.psi.ch/docs/index.html)

Wednesday 13:30 A. Adelmann: OPAL Design, Implementation and
Application

Y. Ineichen ICAP 2009 31st August 2009 6 / 24

Motivation

State of the art space charge calculation as implemented in
OPAL

FFT based direct solver: convolution with Green’s function
rectangular domain with open and periodic boundary conditions

A New Iterative Solver
solve anisotropic electrostatic Poisson PDE with an iterative solver
reuse information available from previous time steps
achieving good parallel efficiency
irregular domain with “exact” boundary conditions
easy to specify boundary surface
P. McCorquodale, P. Colella, D. P. Grote, J.-L. Vay, J. Comp. Phys., 2004

Y. Ineichen ICAP 2009 31st August 2009 7 / 24

Outline

1 Motivation

2 Solver

3 Boundary Conditions

4 Results

5 Summary

Y. Ineichen ICAP 2009 31st August 2009 8 / 24

 http://amas.web.psi.ch/docs/index.html

Solver in a Nutshell

second order finite difference
scheme
standard 7 point stencil (3D)
on Cartesian grid
preconditioned CG iterative
solver
algebraic multigrid
preconditioner (using
smoothed aggregation)

x3 = z

x1

x2

Γ2

Γ1

Γ2

Y. Ineichen ICAP 2009 31st August 2009 9 / 24

AMG Parameters

“decoupled” aggregation scheme:
aggregates of size 3× 3× 3

each processor aggregate its portion of
the grid
many aggregates near inter-processor
boundaries with non-optimal size
number of vertices is substantially
reduced in every coarsening step

clustering vertices into
aggregates

Chebyshev polynomial pre and postsmoothers perform well for parallel
solvers (M. Adams, M. Brezina, J. Hu, R. Tuminaro, J. Comp. Phys.,
2003)
LU based direct coarse level solver

AMG performance critically depends on choice of parameters!

Y. Ineichen ICAP 2009 31st August 2009 10 / 24

Implementation (1/2)

For preconditioner setup and iterative solver we used TRILINOS:
EPETRA: distributed matrices and vectors
AMESOS: direct coarse level solver
AZTECOO: iterative solver
ML: smoothed aggregation based AMG preconditioner

OPAL in conjunction with Independent Parallel Particle Layer (IPPL) offers:
parallel fields
particle representation
operators on fields

Y. Ineichen ICAP 2009 31st August 2009 11 / 24

Implementation (2/2)
Integrating the Solver in OPAL

MGPoissonSolver

redistribute solu-
tion of last time-step method entry point

build stencil and RHS

build hierarchy

build multilevel preconditioner

solve the system us-
ing LHS as initial guess

write solution to IPPL grid
store LHS

reuse preconditioner

reuse hierarchy

OPAL

OPAL

Y. Ineichen ICAP 2009 31st August 2009 12 / 24

Outline

1 Motivation

2 Solver

3 Boundary Conditions

4 Results

5 Summary

Y. Ineichen ICAP 2009 31st August 2009 13 / 24

Boundary Conditions

Boundary Problem

∇2φ = − ρ
ε0

, in Ω ⊂ R3,

φ = 0, on Γ1

∂φ

∂~n
+

1
d
φ = 0, on Γ2

Ω ⊂ R3: simply connected
computational domain
ε0: the dielectric constant
Γ = Γ1 ∪ Γ2: boundary of Ω
d: distance of bunch
centroid to the boundary

x3 = z

x1

x2

Γ2

Γ1

Γ2

Γ1 is the surface of an
1 elliptic beam-pipe
2 arbitrary beam-pipe

element

Y. Ineichen ICAP 2009 31st August 2009 14 / 24

Using Real Beam-Pipe Geometries

Components
arbitrary bounded domains
are specified in files
OPAL imports triangulated
surface mesh
efficient intersection of grid
with surface mesh
discretization approach

Motivation
more accurate simulation
of space-charges Super Buncher

Y. Ineichen ICAP 2009 31st August 2009 15 / 24

Extrapolation at Boundary

x′ x x′′x∗

1 Constant extrapolation: u(x′) = u(x∗) and x∗ ∈ Γ1

2 Linear extrapolation: u(x′) is obtained by means of u(x) and u(x∗)
3 Quadratic extrapolation (Shortley-Weller approximation): u(x′) is obtained

by quadratic interpolation of u(x), u(x′′), and u(x∗)
→ non-symmetric stencil

Y. Ineichen ICAP 2009 31st August 2009 16 / 24

Outline

1 Motivation

2 Solver

3 Boundary Conditions

4 Results

5 Summary

Y. Ineichen ICAP 2009 31st August 2009 17 / 24

Environment

Buin: Cray XT4 cluster at the CSCS in Manno (Switzerland)
468 AMD dual core Opteron at 2.6 GHz
936 GB DDR RAM
30 TB Disk
7.6 GB/s interconnect bandwith

computeSelfField
(301.21s)

ML 26.16%

Create Stencil 7.79%

Create Map 2.80%

CG 62.05%

Y. Ineichen ICAP 2009 31st August 2009 18 / 24

Validation of the Solver

For validation purposes we defined an along the z axis axi-symmetric potential
function and calculated the analytical solution.

h ||eh||2 r ||eh||∞ r

1/64 2.162× 10−3 — 7.647× 10−3 —
1/128 1.240× 10−3 0.80 4.153× 10−3 0.88
1/64 2.460× 10−5 — 6.020× 10−5 —
1/128 6.226× 10−6 1.98 1.437× 10−5 2.07
1/64 5.581× 10−6 — 1.689× 10−5 —
1/128 1.384× 10−7 2.01 4.550× 10−6 1.89

The convergence rate r is defined by

r = log2

(
||e2h||
||eh||

)

Y. Ineichen ICAP 2009 31st August 2009 19 / 24

Parallel Efficiency

number of cores

ef
fi

ci
en

cy
 [

%
]

75

80

85

90

95

100

512 1024 2048

solution time
construction time
application time
total ML time

obtained for a tube
embedded in a
1024× 1024× 1024 grid
construction phase is
performing the worst
with an efficiency of
73%
influence of problem
size on the low
performance of the
aggregation in ML

Y. Ineichen ICAP 2009 31st August 2009 20 / 24

Impact on Physics of OPAL Simulations

 z [m]
1.36 1.38 1.4 1.42 1.44

R
M

SX
 (x

1)
 [

m
]

0.08

0.1

0.12

0.14

0.16

-310

PCG−MG linear
PCG−MG quadratic
FFT

shift of the beam size
minimum (waist)
towards larger z values
a smaller minimum→
self forces are larger
when considering the
beam pipe
beam pipe radius is an
important optimization
quantity

Y. Ineichen ICAP 2009 31st August 2009 21 / 24

Outline

1 Motivation

2 Solver

3 Boundary Conditions

4 Results

5 Summary

Y. Ineichen ICAP 2009 31st August 2009 22 / 24

Summary

smoothed aggregation based algebraic Multigrid preconditioned CG
implemented 3 extrapolation schemes at boundary intersection
non-symmetric equations resulting from quadratic boundary treatment
converge well with PCG
elliptic and arbitrary domains based on real geometries
reducing time to solution (20 and 40%) by reusing hierarchy or
preconditioner
compared to FFT more flexibilities for only a small performance loss
attaining good parallel efficiency: 73% for the worst performing phase
considerable impact on physics (e.g. for narrow beam pipes)

http://arxiv.org/abs/0907.4863 and submitted to JCP

Y. Ineichen ICAP 2009 31st August 2009 23 / 24

Further Work

validation of arbitrary domains against complex geometries
adaptive mesh refinement (AMR)
overcome Trilinos global index 32 bit integer size limitation

Y. Ineichen ICAP 2009 31st August 2009 24 / 24

http://arxiv.org/abs/0907.4863

Backup

Backup

Implementation (2/4)
Integration in OPAL I: Class Hierarchy

PoissonSolver

void::computeSelfField()

FFTPoissonSolver

void::computeSelfField()

MGPoissonSolver

void::computeSelfField()

Implementation (1/3)
Class Diagram

IrregularDomain

compute(Vector t hr):void
getBoundaryStencil():void
getNeighbours():void
isInside(x:int, y:int, z:int):boolean

EllipticalDomain

compute(Vector t hr):void
getBoundaryStencil():void
getNeighbours():void
isInside():boolean

ArbitraryDomain

compute(Vector t hr):void
getBoundaryStencil():void
getNeighbours():void
isInside():boolean

Implementation (3/3)
Interface between IPPL and EPETRA

IPPL to EPETRA Map
1: procedure IPPLToMap3D(localidx)
2: idx← 0
3: for all localidx.x do
4: for all localidx.y do
5: for all localidx.z do
6: MyGlobalElements[idx]← bp→getIdx(x,y,z)
7: idx← idx + 1
8: end for
9: end for

10: end for
11: return new Epetra Map(-1, NumMyElements, &MyGlobalElements[0], 0,

Comm)
12: end procedure

Implementation
Importing geometries in OPAL

CAD input

Mesh
pre/post

processing

femaxx
OPAL

Geometry
input

OPAL
Lattice input

OPAL

Storage

H5FED

H5Part

@@

Efficient Intersection of
Grid-Lines with Triangular

Surface Mesh (T. Moeller, B.
Trumbore, 1997)

Implementation (2/2)
Setup Phase

extended HERONION to dump H5Fed
surface mesh
OPAL imports H5Fed files (serial): m
triangles and v vertices
efficient intersection of grid-lines with
triangular surface mesh (T. Moeller
and B. Trumbore (1997)):

arbitrary domain:
O(m(nx + ny + localz))
elliptic domain: O(nx + ny)

building index table
arbitrary domain: O(nxnylocalz)
elliptic domain: O(nxny)

SW: non-symmetries

Ω ⊂ R3

∂Ω : φ = 0
Gw

Hw

G

H

Grid Operators
AMG: smoothed aggregation

Operate on directly on (linear sparse) algebraic equations:∑
j

ah
ijx

h
j = bh

i

replace ”grid” with ”variables”
coarse level equations are generated without the use of any geometry
no coarse level grids have to be generated or stored
good preconditioner: works on all error components (in contrast to
level-one preconditioner)

SA restrict operator:

Ih
H = (Ih − ωD−1

h Af
h)Îh

H

Multigrid Theory (1/2)
Motivation

Important Observations
Some classical iterative methods (i.e. Gauss Seidel) have a smoothing
effect on the error of any approximation for discrete elliptic problems.

A smooth error can be well approximated on a coarse grid. This coarse
grid has considerably fewer grid points and is therefore cheaper to solve.

From this two observations a Two-Grid can be deduced:
1 apply smoother
2 restrict to a grid with considerably fewer grid points (coarse)
3 solve
4 interpolate back to the fine grid
5 compute a new approximation

Multigrid Theory (2/2)
The Two-Grid: Smoothed Coarse Grid Correction

The discretized system is solved by a Two-Grid:

Ax = b
em

h = xh − xm
h , rm

h = bh − Ahxm
h

rm
h = Ahem

h

rm
h = bh − Ahxm

h smoothing

rm
H = IH

h rm
h

AH êm
H = rm

H

êm
h = Ih

H êm
H

xm+1
h = xm

h + êm
h

restrict

solve interpolate

new approx

iterate

Grid Operators
Geometric Multigrid

restriction

1/8

1/16

1/4

bilinear interpolation

1/41/4

1/41/4

1/2

1/2

Multigrid
from Two-Grid to Multigrid

restrict interpolate restrict

restrict interpolate

interpolate

Depending on how the recursion is coded, some variants of the V-cycle can
be produced.

grid-independence convergence
iterative solver: reuse information
O(n) algorithm

Anisotropy is handled in the discretized problem

Multigrid Algorithm

Mutligrid V-Cycle Algorithm
1: procedure MultiGridSolve(Al, bl, xl, l)
2: if l = maxLevel-1 then
3: DirectSolve Alxl = bl

4: else
5: xl ← Spre

l (Al, bl, 0)
6: rl ← bl - Alxl {calculate residual}
7: bl+1 ← Rlrl {Restriction}
8: vl+1 ← 0
9: MultiGridSolve(Al+1, bl+1, vl+1, l + 1)

10: xl ← xl + Plvl+1 {coarse grid correction}
11: xl ← Spost

l (Al, bl, xl)
12: end if
13: end procedure

Smoothed Aggregation: The Grid Transfer Operator

1 discretization matrix Al is converted
into a graph Gl

2 assign each vertex of Gl is assigned to
one aggregate

3 the tentative prolongation operator
matrix is formed

matrix rows correspond to vertices
matrix columns to aggregates

pi,j =

(
1 if ith vertex in jth aggregate
0 otherwise

4 improve robustness by smoothing the
tentative prolongation operator

clustering vertices into aggregates

Discretization: Irregular Domains (1/2)
O(h) Approach

The key idea of this approach is to only consider grid points inside the domain
neglecting the distance to the domain boundary:

(h−1
w + h−1

s + h−1
e + h−1

n)up − h−1
n un − h−1

w uw − h−1
s us − h−1

e ue︸︷︷︸
=0

= fp

Properties
the resulting discretization matrix is symmetric
O(h) accurate

Discretization: Irregular Domains (2/2)
Shortley-Weller approximation

Ω ⊂ R3∂Ω : φ = 0
hN

hW

hE

hS

2

2666664
b

hN(hN + hS)
a

hW(hW + hE)
− a

hwhE
− b

hShN

a
hE(hW + hE)

b
hS(hN + hS)

3777775
h

Properties
the resulting discretization matrix is non-symmetric for boundary points
O(h2) accurate

	Motivation
	Solver
	Boundary Conditions
	Results
	Summary

