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Numerical investigations of two-dimensional 
photonic crystal optical properties

• Introduction: electromagnetic waves and photonic crystals.

• Theoretical description of two-dimensional photonic crystals.

• Discontinuities of the permittivity distribution. Gibbs 
phenomenon.

• Optical properties of two-dimensional photonic crystals.

• The effect of vertical light confinement in planar waveguides. 
The Guided Modes Expansion method.

• Analysis of the optical properties sensitivity on small 
variations of photonic crystal parameters.



Distributed Bragg reflection

n

n

n

n

x

y

k

a

ω=c·k

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

ω,
 (

2π
c/

a)

k
y
, (2π/a)



Distributed Bragg reflection
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Interference of scattered light

Diffraction grating

Distributed diffraction grating



Natural photonic crystals: opals

Scanning electron micrograph 
showing silica sphere structure 
of precious opal under 40000 x 

magnification



Examples of three-dimensional photonic crystals

Yablonovite

Woodpile structure

http://www.sandia.gov/media/photonic.htm

http://www.ee.ucla.edu/labs/photon/ C. C. Cheng et al., Physica Scripta. T68, 17 (1996)

Opals and inverted opals 

Y.A. Vlasov et al., Nature v.414 (2001)



Two-dimensional photonic crystals

Light localization in the z direction due to a planar waveguide

Periodic variation of the dielectric permittivity in the (xy) plane

1D + 2D ≈ 3D



Two-dimensional photonic crystals

Etching through a slab waveguide
Pillars

3.
2 

µm

Holes

SOI Membrane

S.J. McNab et al., Opt. Express v.11 n.22 (2003)P.T. Rakich et al., Nature Materials v.5 (2006)



Two-dimensional photonic crystals

H. Kosaka et al,. APL v.74 n.10 (1999) H. Kosaka et al,. APL v.74 n.9 (1999)

Superprism effect Self-collimation effect



Two-dimensional photonic crystals

P.-T. Lee, APL v.89 (2006)

A.V. Lavrinenko et al., Appl. 
Phys. B v.87 (2007)

S. Xiao et al., Phys. Lett. A v.340 (2005)

Light localization 
in a cavity

PhC waveguide



Two-dimensional photonic crystals

Slow light regime in the 
photonic crystal waveguides

T.F. Krauss, J. Phys. D: Appl. Phys. v.40 (2007)



Numerical modelling of photonic crystal structures

Mode Expansion Methods (MEM)

The methods can handle periodic and quasi-periodic structures and 
calculate the dispersion relation and mode field distribution. Give details 

about the intrinsic properties of light states in photonic crystals.

Transfer Matrix Method / Scattering Matrix Method (TMM/SMM)

The methods can treat periodic and non-periodic structures and calculate 
the dispersion relation, mode field distribution, and reflection/transmission 

coefficient of a structure.

Finite Difference Time Domain (FDTD)

A “brute force” method which can be used to calculate light evolution in 
almost any structure, periodic or not, and provides direct information about 

the electromagnetic field distribution. 



Basic properties of the photonic crystals

The Bloch theorem
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Periodicity of the dielectric permittivity and the magnetic permeability 
leads to the periodicity of the light state field distribution
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The Bloch state

Maxwell’s equation for the monochromatic electric (E) and the 
monochromatic magnetic (H) fields can be written in the operator form:



Two-dimensional crystal lattice
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Light polarization in 2D photonic crystals

Magnetic field distribution Hxz for the quasi-TE 
light polarization. λ=1.55 µm.
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The Plane Wave Expansion method
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Components of the electromagnetic field are decomposed using 
the plane waves:
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The matrix form of the governing equations:
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The Gibbs phenomenon
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Filtering of the Gibbs phenomenon
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Approximation of a periodic 
function using the Fourier series

Utilization of the filter function

Examples of the filter 
functions

Lanczos filter

Rising cosine filter
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In-plane field components and the effect of the 
Gibbs phenomenon

Electric field Exy amplitude and the direction of the second band TE-polarized Bloch 
mode with the Bloch vector at the Γ point. The photonic crystal consists of the circular air 

holes (the filling factor f=0.4) in the dielectric slab with the effective refractive index 
neff=3.24.

Calculation without the filtering of 
the permittivity distribution

Calculation using the Lanczos filter



In-plane field components and the effect of the 
Gibbs phenomenon

Cross-section along the line y=0 of the electromagnetic field distribution of the second 
band TE-polarized Bloch mode with the Bloch vector at the Γ point. The photonic 

crystal consists of the circular air holes (the filling factor f=0.4) in the dielectric slab 
with the effective refractive index neff=3.24.

Amplitude of the electric field Exy Amplitude of the displacement field Dxy
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Dispersion of the Bloch modes in the PhC
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Group velocity of the Bloch modes in the PhC
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EFS curvature of the Bloch modes in the PhC
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Properties of the guided modes of the planar WG

Field distribution of guided modes propagating in planar waveguides

Magnetic field distribution Hxz for the quasi-TE light polarization.
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The Guided Mode Expansion method
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Comparison of the Guided Mode Expansion and the 
Plane Wave Expansion methods

Top-view scanning electron microscope (SEM) image of the heterostructure
coupled-cavity waveguide (CCW) fabricated using an SOI structure. The hole 

filling factor in the cavity f=40%.



Comparison of the Guided Mode Expansion and the 
Plane Wave Expansion methods

Experimental dispersion diagram of the CCW waveguide compared with the 
Plane Wave Expansion and the Guided Mode Expansion calculations.

The effective refractive index of the SOI waveguide neff=2.8278 (for λ=1.55 µm) 
have been used for the PWE calculation.
J. Jágerská et al., Opt. Lett. v.34 n.3 (2008)
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The effect of the small variation of the permittivity 
distribution on the PhC optical properties

Modelling of the effect of the cavity shape change on the localized states 
properties usually requires series of calculations for each geometry.

Utilization of the perturbation theory can significantly reduce amount of 
calculations required for the structure design and optimization.
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Variation of the hole/pillar 
size

Even a small change of 
photonic crystal parameters can 

lead to a discontinues 
perturbation of the permittivity 

distribution.
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The perturbation of the permittivity distribution
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Shifting boundaries Discontinuous change of the 
permittivity

The series of the correction terms don’t converge even for a small shift of 
the boundary with high index contrast

The coefficients of the decomposition of the permittivity can be defined 
as functions of variables in the multidimensional parametric space
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Calculation the effect of the permittivity 
distribution variations

Dispersion of the TE-polarized Bloch modes for the triangular lattice photonic 
crystal consisting of the circular air holes (the filling factor f=0.4) in the 

dielectric slab with the effective refractive index neff=3.24.
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The effect of the order of the perturbation method
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Tuning the dispersion of the W1 waveguide
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Tuning the dispersion of the W1 waveguide

-2 -1 0 1 2
-2

-1

0

1

2

x

y

Change the filling 
factor of the holes

f=0.4

Utilization of the perturbation theory allows us to estimate the effect of the 
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properties. High computational speed and good accuracy help to speed-up 
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Summary

• The Bloch vector based and the frequency based Plane Wave 
Expansion methods have been derived and used for analysis of the
propagating and evanescent modes in photonic crystals.

• The effect of the discontinuity of the distribution of the dielectric 
permittivity and/or the magnetic permeability in the photonic crystal 
have been discussed and new methods to improve the accuracy have
been proposed.

• The Guided Mode Expansion method, which take into account 
vertical light confinement in 2D photonic crystals, has been developed 
and used for analysis of SOI and membrane based photonic crystals.

• A new method of analysis of small variations of photonic crystal
parameters has been developed. This approach is based on the 
combination of the mode expansion method and the perturbation 
theory.



Analysis of silicon single crystal quality

• Introduction. Crystal growth from the melt. Czochralski
method.

• Thermo-elastic stress in growing crystals.

• Initial defect incorporation into silicon crystals.

• Point defect nucleation and evolution during crystal 
growth.



Silicon single crystals grown by Czochralski method

Schematic model of Czochralski method

300 mm silicon single crystals

grown by Wacker Siltronics AG, 

weight 250 kg



Stress tensor for the 3D case
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Von Mises stress
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Von Mises stress in silicon single crystals

Temperature distribution

A silicon single crystal grown by Czochralski method

Temperature gradient distribution
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Von Mises stress in silicon single crystals

Silicon single crystals grown by Czochralski method

Crystal height 132 mm Crystal height 332 mm
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Point defects in silicon single crystals

Si wafer after etching + copper decoration



Schematic view of point defects formation
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• 2D simulation of initial defects   
incorporation into the crystal.
• 1D simulation of void and oxygen 
precipitate clusterization and 
evolution during crystal growth.



Initial defects incorporation governing equations

Initial defect kinetics:
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Brown’s approach: the system of coupled non-linear differential equations 
with standard recombination rate.

Major physical features: strong variation of defect equilibrium concentrations 
and diffusivities by the reason of the temperature distribution in the crystal 
and strong non-linear interdependence.



The sensitivity of the results to the model input  
parameters
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Spatial distributions and radial distributions for A-A cross-sections of  initial defect concentration for 
the 300 mm diameter crystals with interfaces produced by the 2D and the 3D models.

The heat and mass transfer model, coupled with melt convection models based on the 
2D or the 3D assumptions produces different interface shapes and temperature fields 

affecting predicted incorporated initial defect concentrations.



The model of point defects nucleation and evolution

Basic physical model features and assumptions: simultaneous nucleation and growth of  
voids and oxygen precipitates, multicomponent aggregations with kinetics which 

strongly depends on local temperature and initial defect concentration.
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The gain in the Gibbs free energy associated with void and oxygen precipitate formation 
depends on initial defect supersaturation and surface energy and can be written as

Interstitial injection mechanism of stress energy relaxation for
oxygen precipitate is neglected suppose high Frenkel pair 

formation energy, hence the stoichiometric condition for oxygen 
precipitate should be satisfied.

R is a radius of the equivalent sphere

fk is a volume free energy contribution

σk is an actual surface energy coefficient
ρk is atomic density associated with a point defect

k=V,P : voids and oxygen 
precipitate respectively 
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Simulation of void formation in a 300mm crystal

0 5 10 15
0,0

2,0x105

4,0x10
5

6,0x105

8,0x105

1,0x10
6

1,2x10
6

1,4x106

Interstitia l-rich
        zone

V
o

id
 d

en
si

ty
, c

m
-3

Radial position, cm

 2D interface
 3D interface

0 5 10 15
0

50

100

150

Interstitial-rich
        zoneV

oi
d 

av
e

ra
ge

 s
iz

e
, n

m

Radial position, cm

 2D interface
 3D interface

Variations in a crystal interface shape and corresponding temperature 
distribution can noticeable change radial distribution of void concentration and 

average size.

Average void size depends on incorporated vacancy concentration and 
correlates with total void density:

the higher point defect density, the less cluster size.



Simulation of oxygen precipitates formation

0 5 10 15
10

4

105

106

10
7

108

109

Interstitial-rich
        zoneS

iO
2 p

ar
tic

le
 d

en
si

ty
, c

m
-3

Radial position, cm

 2D interface
 3D interface

0 5 10 15
0

5

10

15

20

25

Interstitial-rich
        zone

S
iO

2
 p

ar
tic

le
 a

ve
ra

ge
 s

iz
e,

 n
m

Radial position, cm

 2D interface
 3D interface

Variations in predicted initial defects concentrations can significantly affect 
predicted point defect concentrations and OSF-ring position in a crystal.

Radial distribution of oxygen precipitate average size shows the regularity 
which is similar to void’s one: high point defect concentration in the OSF-ring 

corresponds with small oxygen precipitate size.



Summary

• Temperature distribution in a growing crystal leads to high thermal 
stresses. Detailed numerical analysis is required to optimize the 
growth conditions.

• The model of initial defect incorporation considering vacancy and 
interstitial embedding at the melt/crystal interface and further transport 
into a crystal with simultaneous recombination has been developed.

• Predicted vacancy and interstitial concentration strongly depends 
on temperature distribution and used initial defect properties set.

• The physical model of point defect formation, which takes into 
account simultaneous nucleation and growth of  voids and oxygen 
precipitates is presented.

• The strong dependence of point defect spatial distribution and 
average size on the interface shape and initial defect properties 
requires an adequate model of heat & mass transfer and reliable initial 
defect thermodynamic data.



Thank you for the 
attention!


