

UNIVERSITET Optical Replica Synthesizer and EuXFEL Laser Heater

Volker Ziemann Department for Physics and Astronomy Uppsala University

Theme

- Uppsala University is involved in activities to manipulate bright electron bunches with an external laser
 - for diagnostic purposes
 - Optical Replica Synthsizer
 - for beam stability
 - Laser Heater
- Other systems in a similar spirit are (that you already do) are EO or slicing

Optical Replica Synthesizer in FLASH

The original ORS collaboration:

G. Angelova, VZ, *Uppsala University* P. van der Meulen, P. Salén, M. Larsson, *Stockholm University* H. Schlarb, J. Bödewadt,E. Saldin, E. Schneidmiller, M. Yurkov, F. Löhl, A. Winter, DESY S. Khan, *DELTA, TU Dortmund* A. Meseck, *BESSY*

Optical Replica

The Idea behind the ORS

longitudinal

electron distribution

- Problem: measure ultra-short bunches in the 10s of fs range: EOS, TEO, LOLA, ORS
 - too fast for electronics (10 Gs/s, 100 ps)
 - but laser folks know (autocorrelation, FROG)
- Solution: make an optical copy of the electron bunch and analyze that with laser methods.

V. Ziemann: Optical Replica amd Laser Heater

UPPSALA UNIVERSITET

The Seed Laser

- Er-fiber ring-oscillator (~1550 nm) phase locked to RF (micro-timing)
- Booster amplifier
- 2nd harmonic generation to 772 nm
- CPA 2001 regenerative amplifier on loan from Stockholm
- Pockels cell fire to let the light pulse out (macro-timing)
- 0.7 mJ/pulse, 150 fs to 2 ps
- Safety shutters (ND and other)
- Diagnostics: Frog, virtual waist

Laser Transfer Line and OS0

UPPSALA UNIVERSITET

V. Ziemann: Optical Replica amd Laser Heater

The Undulators

- Electromagnets
- Designed and built by Scanditronix, Vislanda, Sweden
- Period 20 cm
- 5+2 periods
- 4 power supplies per magnet
- Modulator=(V)eronica
- Radiator=(H)ilda

V. Ziemann: Optical Replica amd Laser Hea-

V. Ziemann: Optical Replica amd Laser Heater

GRENOUILLE

UPPSALA UNIVERSITET

- Cyclidrical lens makes horizontal strip
- Fresnel biprism creates crossing wavefronts in thick SHG crystal → auto-correlator
- Effective thickness of SHG crystal varies with viewing angle
 → Spectrally resolved
- Second double cylidrical lens images onto camera
- Horizontally \rightarrow time
- Vertically \rightarrow spectrum
- GRENOUILLE USB 8-50 controlled by VideoFROG software

Picture from Trebino's book

V. Ziemann: Optical Replica amd Laser Hea

Experiment Preparation: Transverse Overlap

UPPSALA UNIVERSITET

Electron orbit < 0.1 mm

Electron and Laserposition on OTR equal before and after modulator

Modulato

110815, PSI

10

X (mm)

15

20

V. Ziemann: Optical Replica amd Laser Heat

UNIVERSITET

Temporal Overlap of sub-ps Electron bunch und Laser pulse

110815, PSI

V. Ziemann: Optical Replica amd Laser Hea

Laser Modulator OTR OTR Chicane Chicane

UPPSALA

...finally: Single-shot FROGs

- From radiator (HILDA)
- Significant tuning with OS2 Setup
- long/short Grenouille
- First shortE/shortL because of intensity
- Here shortE/longL during SASE conditions at 700 MeV (13 nm)
- Unfortunately no simultaneous LOLA measurement
- Parasitic operation

V. Ziemann: Optical Replica amd Laser Heat

UPPSALA UNIVERSITET

What's next?

- ORS undulators are installed in the sFLASH beam line.
- sFLASH HHG laser can deliver 30 mJ in IR, but presently mirrors are optimized for harmonics around 30 nm.
- New laser beamline for 800 and 270 nm (tripler) will be installed this fall...
- ...for EEHG experiments (hopefully) in conjunction with Replica experiments early 2012 (stiff competition for beam time in FLASH)

ORS Conclusions

UPPSALA UNIVERSITET

- Installed and commissioned the optical replica synthesizer in FLASH since fall 2007
- We managed to hit the electron bunch with laser
 - can be used to measure longitudinal-transverse correlations in long (few ps) bunches
- Eventually recorded online FROG traces from the shortpulse GRENOUILLE
 - unfortunately no simultaneous LOLA measurements
- Undulators were reinstalled in the sFLASH beam line and using the HHG laser and new laser beam line they will be used for EEHG and hopefully ORS experiments.

- Call by the Swedish Research Council for EuXFEL contributions in March 2008
- We were triggered by the electron-laser theme
- Succesful bid, approved May 2008, but money was only released in October 2010!
- Swedish in-kind contribution to the EuXFEL

 – UU: Gergana Angelova-Hamberg, Mathias Hamberg, Vitaliy Goryashko (from September)

• So why does EuXFEL need one and what is it?

Why ...

- Electrons are born in the photo cathode with a very small momentum spread (~3 keV)
 - makes them susceptible to microbunching instability on their travel through the linear accelerator and bunching chicanes
- Add Landau damping (decoherence) in a wellcontrolled way to increase momentum spread
 - induce moderate momentum modulation by passing a laser over the electrons in an undulator
 - and smear out by coupling some of the angular spread into the longitudinal plane

How ...

- Pass IR laser over beam in undulator \rightarrow modulate dE
- $\rm R_{_{5\!2}}$ of 2nd leg of chicane couples 'transverse heat' into the longitudinal plane and smears out the modulation

Parameters

- Will use 1030 nm photons
- Operate between 110 and 160 MeV
- Permanent undulator with variable gap
- 8+2 periods of I=74 mm
- Chicane offset 30 mm
- Second half has $R_{_{55}} = 0.003/2 \text{ m}, R_{_{52}} = 0.030 \text{ m}$
- Pulse energy up to 50 uJ (2.5 MW, 20ps)
- Beta functions 9 and 12 m, σ ~ 0.2 mm

- Use the non-converted "red" photons from the first frequency doubling (red2green) stage
 - Inherently locked in timing to the parent UV photons for the entire pulse train
 - Bandpass filter to separate
 - Intensity according to Ingo Will is 30 to max 50 µJ depending on the pulse flattening scheme. This is adequate for routine operation, but for start-up and commissioning more is desirable (LCLS has 200 µJ available).
- Plan: study stability of photons (intensity, pointing, M2)
- Critical issue: additional laser amplifier stage (~100 kEuro according to Ingo Will, not in our budget, but MAC ok'ed it)
 - we need to follow the gun laser development

LIPPSAL A

- Long (~50 m) transport path through 'hostile' environment such as the vertical shaft
- Evacuated pipe to avoid dn/dT-wandering
 - actually need moderate vacuum but will use ion pumps to avoid mechanical noise
- Mirror mounts and pointing stability
 - passive stability to counteract fast jitter
 - slow feedback near undulator to counteract drifts
- Dielectric mirrors, use "spill" for target practice

Chicane Layout

Undulator Magnet

SCANDITRONIX

Maanet

- Variable gap
- Gap > 30 mm
- 110..160 MeV
- L₀=74 mm
- 8+2 periods
- B₀=0.11..0.27 T

Courtesy of

European

Hardware

V. Ziemann: Optical Replica amd Laser Heater

European

28

- Diagnostic: fast photo-diode and oscilloscope (20 ps pulses) laser and synchrotron light

Screen before and after the undulator

Diagnostic: OTR for electrons and diffuse

Control: delay stage in laser hut

for laser

Longitudinal

Control: in periscope

LIPPSAL A

UPPSALA UNIVERSITET

0.02

 $\begin{smallmatrix} 0.015 \\ M_{10} \\ 0.01 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.015 \\ 0$

0.0

 $\sigma_L = \sigma_L^0$

 $\sigma_{xb} = \sigma_L^0$

 $\sigma_{vb} = \sigma_L^0$

 $\dot{\mathbf{X}} = \mathbf{0}$

Y = 0

-75

0.02

0.015

0.01

0.005

0.0

0.02

Λ(Δγ₀) [(keV)⁻¹] 0.010 0.005

 $V(\Delta \gamma_0)$ [(keV)⁻¹]

-50

 $\sigma_L = \sigma_L^0$

 $\sigma_{xb} = \sigma_L^0$

 $\sigma_{vb} = \sigma_L^0$

Y = 0

-75 -50

 $\sigma_L = \sigma_L^0$

 $\begin{array}{l} \sigma_{yb} = \sigma_L^0 \\ \mathbf{X} = \mathbf{0} \end{array}$

 $\mathbf{Y} = \mathbf{0}$

 $\sigma_{xb} = 1.5 \sigma_L^0$

-50

-75

-25

0

 $m_e c^2 \Delta \gamma_0$ [keV]

25

 $X = 0.5 \sigma_{r}^{0}$

-25

0

 $m_{e}c^{2}\Delta y_{0}$ [keV]

-25

0

 $m_e c^2 \Delta \gamma_0 \text{ [keV]}$

25

 $\sigma_{L}^{0} = 0.3 \text{ mm}$

50

75

 $P_I = 1 \text{ MW}$

50

75

25

Tolerances

 $\sigma_{L}^{0} = 0.3 \text{ mm}$

 $P_I = 1 \text{ MW}$

0.02

0.0

0.02

 $\begin{smallmatrix} 10.0 \\ \Lambda^{\rm (Vl_0)} & (\rm [(keV)^{-1}] \\ 0.005 & 0.005 \end{smallmatrix}$

0.0

0.02

 $\begin{smallmatrix} 1 \\ \Lambda^{(V_{A0})} & 0.015 \\ 0.010 & 0.005 \\ 0.005 & 0.005$

0.0

[0.015 0.01 ((keV)⁻¹) 0.005

 $\sigma_{r}^{0} = 0.3 \text{ mm}$

50

75

 $\sigma_{I}^{0} = 0.3 \text{ mm}$

 $P_I = 1 \text{ MW}$

 $P_{I} = 1 \text{ MW}$

 $\sigma_L = 1.25 \sigma_r^0$

 $\sigma_{xb} = \sigma_L^0$

 $\sigma_{vb} = \sigma_{I}^{0}$

 $\dot{\mathbf{X}} = \mathbf{0}$

Y = 0

75

 $\sigma_L = \sigma_L^0$

 $\sigma_{xb} = \sigma_L^0$

 $\sigma_{yb} = \sigma_L^0$

 $X = \sigma_I^0$

Y = 0

-75

-50

 $\sigma_L = 1.5 \sigma_L^0$

 $\sigma_{xb} = 1.5 \sigma_L^0$

 $\sigma_{yb} = \sigma_L^0$ X = 0

Y = 0

-75 -50

-25

-25

0

m c2Av. [keV]

25

50

 $\sigma_{L}^{0} = 0.3 \text{ mm}$

 $P_{L} = 1.5 \text{ MW}$

50

75

75

50

25

0

 $m_e c^2 \Delta \gamma_0$ [keV]

25

50

 $\sigma_L^0 = 0.3 \text{ mm}$

 $P_L = 1 \text{ MW}$

75

• Size ~20%

• Offset $\sim \sigma/2$

 Elliptic, ok, if we increase laser size

• Angle < $\sim \sigma/L$

0.0

V. Ziemann: Optical Replica amd Laser Heater

25

0

 $m_e c^2 \Delta \gamma_0$ [keV]

110815, PSI

Diagnostics on Laser Tables

Initial Setup

UPPSALA UNIVERSITET

- photon waist size and position
- control transverse position
- Online Monitoring
 - photon beam position (4Q)
 - photon beam size (camera)
 - Timing (diode)
- Stabilization

• Use signals from near-farfield, x,x' cameras after dielectric mirrors to compensate drifts with 2 upstream mirrors.

V. Ziemann: Optical Replica amd Laser Heater

European

Timeline

UPPSALA UNIVERSITET

	2010	0			2011				2012				2013				2014				Т	
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	T	
Overall strategy																					Ī	
Simulation/Tolerances																					T	
Technical design and drafting																					T	
Fabrication																					T	
Installation																					T	
Commissioning																					I	
																					I	
What laser system?																					Ι	
																					I	
Undulator:																					Ι	
Specification																					I	
Tender																					Ι	
Fabrication																					I	
Testing/field measurments																					I	
Installation																					I	
Other components with default schedule			Ļ г	NL										T					liek		ant aritaria	Data
Chicane dipole magnets			⊢⊦	N	0			IV.	nie	510	ne			+		A	CO	mp	lisi	ime	ent criteria	Date
Electron vacuum components			⊢	M	1	Kick-off meeting				E	Exchange of documents completed						Q3-10					
Electron diagnostics				_M	2	Simulation infrastructure set up						P	Preliminary design report						Q4-10			
Laser beam line optics			Ļι	M	3	Design report						A	Agreement on all critical parameters						Q3-11			
Laser vacuum components			\perp	M	4	Undulator specification						S	Specifications completed, tendering						Q3-11			
Laser diagnostics											de	documents ready										
			ſ	M	5	Undulator contract							C	Contract award after tendering						Q4-11		
			Ē	M	5	Laser system concept							C	Conceptual design agreed						Q4-11		
			ľ	M	7	Laser system design							F	Final design completed, TDR						01-12		
			h	M	2	Undulator						1 n	Delivery of undulator						02-12			
			- 1	M	5	Vacuum chambers				1 D	Delivery of vacuum chambers and support						03-12					
				IVIS	7	vacuum unambers					etructuree					0.0-12						
			H	141		Optical components					1 2	Delivery of all entired components						02.10				
			ŀ	NA4	4	Field measurements						무단	Undulates field measurements examinated						04.12			
			ŀ	MI	4	Field measurements						10	Undulator field measurements completed						Q4-12			
			H	M1	2	Installation and integration					In	Installation & Integration completed					Q2-13					
			L	M1	3	Cor	nmi	ssio	ning					C	omn	nissi	onin	g co	omp	leteo	d	Q3-13

110815, PSI

V. Ziemann: Optical Replica amd Laser Heater

- Laser heater is a Swedish in-kind contribution to the EuXFEL project done by Uppsala University.
- Started for real early 2011.
- Simulations and tolerance calculations are in progress. (Martin Dohlus and Vitaliy Goryashko)
- We are working on engineering solutions (Mathias Hamberg, Niklas Johansson, Masih Noor)
- Undulator parameters are fixed and draft of tender is in the works.

Backup slides

V. Ziemann: Optical Replica amd Laser Heater

Optical Station 1

Essential for timing: Laser + Synchrotron radiation

Modulator

35

41 OS2

Radiato

V. Ziemann: Optical Replica and Laser Hea

UPPSALA UNIVERSITET

Seed Laser and Modulator

- Seed laser must overlap electron bunch and provide sufficient strength to modulate the energy
- probably Ti:Sapphire
- Length: a few ps, say 10 ps
- Synchronization to bunch RF and electron gun
- Power: 100 MW, 1 mJ/pulse, 5 Hz
- modulation amplitude: $dp/p \sim 10^{-3}$
- Need dog-leg to shine laser onto electron trajectory
- Undulator with about 5 periods

Coupling between laser and electrons

$$\Delta U = e \int (\vec{E}.d\vec{s}) = e \int E_x v_x dt$$

Some gain, some loose, depending on initial phase

Radiator Undulator

- Electrons have longitudinal density modulation and can radiate coherently.
- Each electron slice oscillates in undulator (like an antenna) and all contributions are added in phase.
- Number of periods *N* determines the length of the light pulse that an electron emits \rightarrow short undulator
- Need to propagate replica pulse to diagnostic section

UPPSALA UNIVERSITET

- 8-50: 17 fs
- 5 Periods
 - 4 µm/13 fs
- Wavefront tilt
- Dispersion in optics on OS2
- Bent(?) mirrors
- Plasmaoscillations(?)

Resolution

Grenouille: Datenblatt von
 Swamp Optics

GRENOUILLE model:	8-9USB	8-20USB	8-50USB	8-300USB	8-500USB					
Wavelength range:		700 – 900 nm								
Pulse-length range @ 800 nm:	~10 - ~100 fs	~20 – ~200 fs	~50 – ~500 fs	~0.3 – ~2 ps	~0.5 – ~5 ps					
Pulse-length range @ 1050 nm:	~8 – ~80 fs	~15 – ~80 fs	~30 – ~100 fs	~0.1 - ~1 ps	na					
Temporal resolution @ 800 nm:	3.7 fs	12 fs	17 fs	50 fs	90 fs					
Temporal resolution @1050 nm:	2 fs	9 fs	13 fs	41 fs	na					
Delay increment ¹ :	0.95 fs/pixel	0.85 fs/pixel	1.145 fs/pixel	11.5fs/pixel	11.5fs/pixel					
Temporal range ³ :	336 fs	480 fs	1.9 ps	19 ps	19 ps					
Spectral resolution @ 800 nm:	5 nm	4 nm	2 nm	0.23 nm	0.05 nm					
Spectral resolution @1050 nm:	6.5 nm	15 nm	7 nm	0.8 nm	na					
Spectral range @ 800 nm ³ :	300 nm	160 nm	50 nm	8 nm	10 nm					
Spectral range @ 1050 nm ³ :	400 nm	400 nm	125 nm	20 nm	na					
Pulse complexity:	Time-bandwidth product < ~10									
Intensity accuracy:	2%									
Phase accuracy:	0.01 rad (intensity-weighted phase error)									
Single-shot possible?	Call us. ² Yes; both free-running mode & triggered single-shot are now stan									
Sensitivity (single-shot):	Call us. ² 1 µJ									
Sensitivity (at 10 ³ pps):	500µW(500nJ)									
Sensitivity (at 10 ⁸ pps):	50 mW (500 pJ)									
Spatial profile accuracy:	<	s)								
Spatial chirp accuracy (dx/dλ):	1 µm/nm									
Pulse-front tilt accuracy (dt/dx):	0.05 fs/mm									
Required input polarization:	Any (just rotate GRENOUILLE!)									
Required input-beam diameter:	2 – 4 mm (collimated)									
Input-beam lateral-displacement	>1 mm									
tolerance:	21000									
Number of alignment knobs:	: Zero									
Time to set up:	~ 10 minutes									
Dimensions (L x W x H)	33 cm x 7.5	33 cm x 7.5	33 cm x 4.5	45 cm x 7.5	61 cm x 7.5					
w/camera:	cm x 16.5 cm	cm x 16.5 cm	cm × 11.5 cm	cm x 16.5 cm	cm x 16.5 cm					
Weight:	3 kg	3 kg	1.2 kg	3 kg	6 kg					

1. At full camera resolution.

2. The Model 8-9 can be modified to allow single-shot measurement, but at a reduction in sensitivity.

3. Temporal and spectral "ranges" are the full-scale ranges, not the pulse FWHM (which is typically a factor of 2 to 3 smaller).

Comparison with LOLA UNIVERSITET (long several ps bunches)

- Simultaneous (almost, 30 min) measurement of bunch profile with transversely deflecting cavity LOLA (blue) and ORS (black).
- Initially the time calibration of • LOLA was off by 20 %, now fixed.
- OD2 Neutral density filter before • the Basler camera to prevent saturation
- smoothing and sqrt(ORS)
- Very good agreement of the recorded bunch length

Optical Replica

Undulator period

- Parameters
- Laser at 1130 nm
- Resonant between 110 and 160 MeV
- If period too short, filed is very low and hardly any wiggeling
- If too large, the field gets too large

 7.4 cm was chosen as a decent

UNIVERSITET

FEMLAB 2D simulation

 Field pattern and field on axis, here choose B_j=1T

 Gap between 30 and 50 mm suffices

Field vs gap

UNIVERSITET

- Maximum gap to minimize effect on beam?
 - $B \sim B_{nax} exp(-gap/period)$

V. Ziemann: Optical Replica amd Laser Heater

Parameter list

Energy		110	120	130	140	150	160
B0	Т	0.1102	0.1497	0.1832	0.2136	0.2420	0.2691
К		0.7615	1.0346	1.2662	1.4762	1.6725	1.8597
A	micron	42	52	59	63	67	70
gap(est.)	mm	51.0	45.0	39.5	36.5	33.7	30.9

Synchronization

- Delay stages on laser table (Level 5)
 - crude: ~ns scale, mm-screw
 - delicate: ~ps scale, µm-screw
 - can we also delay the UV photons in case 'we' are too slow?
 - implications for photon routing in tunnel
- Lens to collimate photon beam
- Pulse stretcher to lengthen photon pulse
 simplify the longitudinal overlap

Laser Vacuum System

UPPSALA UNIVERSITET

- Enter vacuum system on the table in laser room (window)
- Need only moderate vacuum to avoid
 - Convection, Schlieren effect
- Roughing pumps would suffice
 - easier, 'gadgets' need not be UHV compatible
- But ion pumps are preferred because they have no moving parts and avoid vibrations
- No baking foreseen
- Ion pums have an expected lifetime of minutes in rough vacuum
- Can we mechanically decouple the pumps from the mirror holders?
- Resonance frequency of long pipe? 110615 Desy V. Ziemann: Laser Heater Design Review

Vacuum, 10L pump every 10 m

VAKTRAK: Laser Heater Beamline, r=3cm, 10 L pump/10m

P/Q(START) = 0.1287E-05/ 0.000 , P/Q(END) = 0.1287E-05/-0.2033E-19

AVERAGE P/Q = 0.1150E-05/ 0.1926E-19

• Assume outgassing 14e-10 torr l/s/cm² (Stainless steel after 10 h pumping)

- R. Elsey, Outgassing II, Vacuum 25, 347, 1975 V. Ziemann: Laser Heater Design Review

• Moderate pumping every 10m OK for 10⁻⁶ torr

Vacuum 10 L pump every 20 m

30

40

20

Z [M] • Enough for 3 10⁻⁶ torr average pressure

10

• Looks like 10L pumps are ok

0

Mirror Holders

- Must be stable (jitter and drift)
 - solidly bolted to the wall without extended support structure
- Mechanically decouple from long vacuum pipe
 - long bellow on either side
- Pointing capability to direct laser to next mirror
 - piezo- or stepper-motor driven mirror mounts
- Need capability to determine whether the laser hits the mirror
 - pin diode array with BPW34F probably works

BPW34F sensitivity

Relative Spectral Sensitivity

