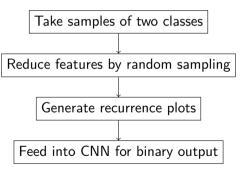


S. Li, et al. :: LSM :: Paul Scherrer Institut

HIPA Interlock Forecasting Overview

March 2, 2021

- RPCNN model
 - Submitted paper
 - Improved results
 - Next steps
- Survival model
 - Current result
 - Next steps



- Recurrence Plot Convolutional Neural Network (RPCNN) model
- Paper submitted to MDPI Special Issue "Machine Learning and Accelerator Technology"
- Preprint: https://arxiv.org/abs/2102.00786

Transfer "time windows" of channels into recurrence plots, then use CNN for binary classification.

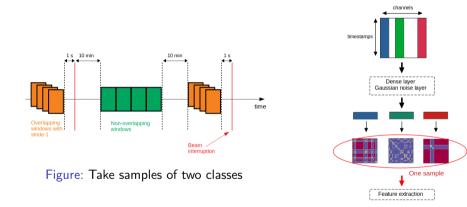


Figure: Generate recurrence plots

Figure: ROC curve of the RPCNN best model, with CI calculated on 20 different validation sets.

Model	ΤР	FP	ΤN	FN	TPR	TNR
RPCNN best	40	75	44035	775	4.9%	99.8%

Model	Beam time saved[s/interlock]	AUC
RPCNN best	0.5 ± 0.2	0.71 ± 0.01

Figure: Screenshots from mimicked live predictions over the validation data. Blue line: prediction value from the model; Orange line: beam current where a drop to zero indicates an interlock; Green line: binary classification threshold.

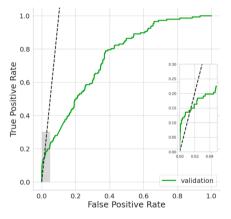


Figure: ROC curve of the improved RPCNN model.

• **Remove unclear samples**: Remove all interlock samples with prediction value < 0.5 in the training set

- Avoid duplicated FP: Ignore the next 10 samples after a FP sample
- Make TP resembles reality: An interlock is counted as a TP as long as there's one positive sample inside 1 min before

Model	Beam time saved[s/interlock]	AUC
RPCNN best	1.5	0.76

- Different initialization of the model would lead to rather divergent results \rightarrow train with more data; adaptive learning
- Revise the definition of TP, FP and the beam time saved metric
- Test in real-time experiments

- **Seq2One**: sliding time series of N timesteps \rightarrow Weibull parameters of the last 1 timestep (better performance)
- **Seq2Seq**: sliding time series of N timesteps \rightarrow Weibull parameters of N timesteps (worse performance)
- Pretrain method: feed the data closer to interlocks more times into the network

- Alarm only at 0.2-0.4 s before interlock
- Several early alarms need investigation

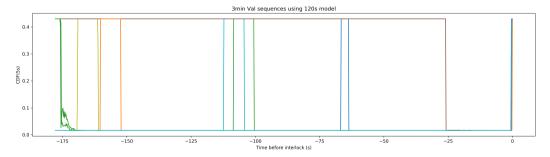


Figure: Validation results of the survival model 3 min before interlock.

- Get Insights from the RPCNN model
 - Use the subset of features in RPCNN
 - Use recurrence plots as input
- Summary statistics?
- (Open for suggestions)

Wir schaffen Wissen – heute für morgen

Thanks to

Mélissa Zacharias Jochem Snuverink Jaime Coello Perez Cruz Fernando Davide Reggiani Andreas Adelmann

