Model Deployment, Surrogate Models and Anomaly Detection

Jaime Coello de Portugal

Many thanks to Jochem Snuverink and Melissa Zacharias

Data Collection:

- Alignment of the data stream from EPICS. Or loading from the Archiver or an HDF File.
- Missing data interpolation.
- Windowing as requested.

Model output computation:

- Each model produces its own results.
- Additional diagnostics information can be provided.

Models deployment

Data persistence:

- Input, prediction and diagnostic information are stored in a database.
- Each entry is keyed with the acquisition timestamp.
- All data is available for live display or later analysis.

Display:

• Live or historic display for each of the models.

- As the input data is recorded in the database, it can be used to train the model.
- The interactive training GUI is accessible from the display.

On behalf of Melissa Zacharias

Interlocks forecasting model retraining

- All the machine learning models we developed are deployed using an unified system.
- The system can be relatively easily customized to deploy any live ML model on a machine controlled by EPICS.
- All input information, model results and diagnostic information are recorded in a database.
- The information from the database can be shown live or as historical data.
- In the case of the interlock forecasting model, the database information can be used to interactively retrain the model.
- The interactive training GUI allows to check the performance and redeploy retrained models on live recorded data.

Anomaly Detection Motivation

"An observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism."

— Hawkins, 1980

- Try to find observation or sequences that deviate from the "normal behaviour".
- Experts would recognize these anomalous patterns easily but cannot be monitoring the huge amount of data some systems produce.
- E.g: Credit card fraud detection, intrusion detection in cybersecurity, or **fault diagnosis in industry**.
- Specific e.g: At HIPA the MHB7R:ILOG:2 temperature detector broke down without anyone noticing.

Plots from: Ted D'Ottavio et al, Experience Using NuPIC to Detect Anomalies in Controls Data, ICALEPCS 2019

Anomaly detection: HTM and LSTM combination

HTM Anomaly Score: Previous sample Current sample HTM SDR Predictive columns 0 0 0 0 0 0 0 0 0 0 0 Correctly predicted inputs Anomaly Score = -Number of connections

Anomaly detection: HTM and LSTM combination

Anomaly detection in HIPA

Normal

LSTM probabilities

NUPIC probabilities

No alarms

• Anomalies detected live in the vacuum level in the cyclotron:

- The combination of the HTM network and the LSTM seems to provide a good real time anomaly detection system.
- The system works well on archived and live data, adapts to both stable and periodic behaviour.
- It would have alerted the experts of the failure of the MHB7R:ILOG:2 sensor tenths of minutes in advance.
- Tested on real time on PROSCAN.
- Preparing a publication of the method and the use at HIPA.

- Model for M3TBPS-0:IST:2 (one of the four external blades).
- Uses 68 monitors all over the machine, many in the SINQ line.
- The model is a Gradient Boosting model (tree ensemble) made with CatBoost.

- Model for M3TBPS-0:IST:2 (one of the four external blades).
- Uses 68 monitors all over the machine, many in the SINQ line.
- The model is a Gradient Boosting model (tree ensemble) made with CatBoost.

Zooming in some examples in the test set:

Zooming in some examples in the test set:

• Good models are available, but the camera image processing is being improved.

- A model for M3TBPS-0:IST:2 has been developed and predicts the signal of the sensor within 1 degree.
- The model uses just passive beam diagnostic sensors.
- The predictions stays correct on data observed weeks after the training set, no long term drifts.
- In 2021, the temperature sensor array is being changed to new locations in the target. The model could provide temperature predictions in a location where no sensors are available.
- A report of these models is planned to document the development.