Safe Bayesian Optimization for Tuning Particle Accelerators

J. Kirschner, J. Coello, N. Hiller, J. Snuverink, M. Mutny, M. Nonnenmacher, R. Ischebeck, A. Krause

March 2nd, 2021

PACMAN progress meeting

Task 1: Beam Optimization at SwissFEL

Objective: Beam intensity

Task 1: Beam Optimization at SwissFEL

Objective: Beam intensity

Task 2: Loss Minimization at HIPA

Objective: Minimize proton losses

Formal objective:

$$x^* = \argmax_{x \in \mathcal{X}} f(x)$$

Formal objective:

$$x^* = \argmax_{x \in \mathcal{X}} f(x)$$

riangleright Parameter space $\mathcal{X} \subset \mathbb{R}^d$

Formal objective:

$$x^* = \argmax_{x \in \mathcal{X}} f(x)$$

- $hd Parameter space <math>\mathcal{X} \subset \mathbb{R}^d$
- ▶ Weak assumptions on f: smoothness, but not convex, no analytical form, . . .

Formal objective:

$$x^* = \arg\max_{x \in \mathcal{X}} f(x)$$

- $hd Parameter space <math>\mathcal{X} \subset \mathbb{R}^d$
- ▶ Weak assumptions on f: smoothness, but not convex, no analytical form, . . .

Get noisy point evaluations
$$y = f(x) + \epsilon$$

- ▶ Noisy Zero-Order Access / Blackbox
- No access to gradients

Formal objective:

$$x^* = \argmax_{x \in \mathcal{X}} f(x)$$

- $hd ext{ Parameter space } \mathcal{X} \subset \mathbb{R}^d$
- ▶ Weak assumptions on f: smoothness, but not convex, no analytical form, . . .

Get noisy point evaluations $y = f(x) + \epsilon$

- ▶ Noisy Zero-Order Access / Blackbox
- No access to gradients
- Evaluations of f are 'expensive': sample efficiency is important

Grid search

Grid search

Local Methods

- ▷ Nelder-Mead
- ▶ Random walk

Grid search

Local Methods

- ▶ Random walk

Evolutionary Algorithms

Grid search

Local Methods

- Nelder-Mead
- Random walk

Evolutionary Algorithms

- ▷ E.g. CMA-ES, Particle Swarm

Global Methods

Bayesian Optimization (this talk)

For each step t = 1, 2, 3, ..., n,

- 1: Compute *probabilistic model* of target

For each step t = 1, 2, 3, ..., n,

- 1: Compute *probabilistic model* of target
- 2: Choose evaluation point
 - Score function based on model

For each step
$$t = 1, 2, 3, ..., n$$
,

- 1: Compute *probabilistic model* of target
- 2: Choose evaluation point
 - Score function based on model
- 3: Noisy measurement $y_t = f(x_t) + \epsilon$
 - ▷ Update model

For each step
$$t = 1, 2, 3, ..., n$$
,

- 1: Compute *probabilistic model* of target
- 2: Choose evaluation point
 - Score function based on model
- 3: Noisy measurement $y_t = f(x_t) + \epsilon$
 - Update model

Return: return best measured or best predicted setting.

Constraint Optimization

$$\underset{x \in \mathcal{X}}{\operatorname{arg max}} f(x)$$
 s.t. $g(x) \leq 0$

Safe Optimization:

- \triangleright Iterates need to satisfy $g(x_t) \leq 0$
- Apriori unknown constraint function g
- \triangleright Measure at x and observe $f(x) + \epsilon$, $g(x) + \rho$
- Multiple constraints

Constraint Optimization

$$\underset{x \in \mathcal{X}}{\operatorname{arg max}} f(x)$$
 s.t. $g(x) \le 0$

Safe Optimization:

- \triangleright Iterates need to satisfy $g(x_t) \leq 0$
- ▷ Apriori unknown constraint function g
- ightharpoonup Measure at x and observe $f(x) + \epsilon$, $g(x) + \rho$
- Multiple constraints

At HIPA:

Constraint Optimization

$$\underset{x \in \mathcal{X}}{\operatorname{arg max}} f(x)$$
 s.t. $g(x) \leq 0$

Safe Optimization:

- \triangleright Iterates need to satisfy $g(x_t) \leq 0$
- ▷ Apriori unknown constraint function g
- ▶ Measure at x and observe $f(x) + \epsilon$, $g(x) + \rho$
- Multiple constraints

At HIPA:

At SwissFEL:

▷ Avoid electron losses, minimum signal


```
\mathcal{D}_0 = \{\}
For t = 1, 2, 3, ...

1: Estimate: \hat{f}_t, \hat{g}_t | \mathcal{D}_t

\triangleright Gaussian process / kernel regression
```

$$\mathcal{D}_0 = \{\}$$
For $t = 1, 2, 3, ...$

1: Estimate: $\hat{f}_t, \hat{g}_t | \mathcal{D}_t$
 \triangleright Gaussian process / kernel regression

2: Acquisition: $x_t = \arg\max_x \alpha(x|\hat{f}_t, \hat{g}_t)$
 \triangleright balances exploration-exploitation and safety
 \triangleright augment data \mathcal{D}_{t+1}

$$\mathcal{D}_0 = \{\}$$

For t = 1, 2, 3, ...

- 1: Estimate: $\hat{f}_t, \hat{g}_t | \mathcal{D}_t$
- 2: Acquisition: $x_t = \arg\max_{x} \alpha(x|\hat{f}_t, \hat{g}_t)$
 - ▷ balances exploration-exploitation and safety
 - riangle augment data \mathcal{D}_{t+1}

$$\mathcal{D}_0 = \{\}$$

For t = 1, 2, 3, ...

- 1: Estimate: $\hat{f}_t, \hat{g}_t | \mathcal{D}_t$
- 2: Acquisition on \mathcal{L} : $x_t = \arg \max_{x \in \mathcal{L}} \alpha(x|\hat{f}_t, \hat{g}_t)$
 - balances exploration-exploitation and safety
 - riangle augment data \mathcal{D}_{t+1}

$$\mathcal{D}_0 = \{\}$$
For $t = 1, 2, 3, ...$

$$1: \text{ Estimate: } \hat{f}_t, \hat{g}_t | \mathcal{D}_t$$

$$\triangleright \text{ Gaussian process } / \text{ kernel regression}$$

$$2: \text{ Acquisition on } \mathcal{L}: x_t = \arg\max_{\mathbf{x} \in \mathcal{L}} \alpha(\mathbf{x} | \hat{f}_t, \hat{g}_t)$$

$$\triangleright \text{ balances exploration-exploitation and safety}$$

$$\triangleright \text{ augment data } \mathcal{D}_{t+1}$$

$$3: \text{ If } \operatorname{error}(\mathcal{L}) < \epsilon:$$

$$\text{ New 1d subspace } \mathcal{L} \text{ at best point } \hat{x}_t \text{ in } \underset{random}{random} \text{ direction}$$

$$\mathcal{D}_0 = \{\}$$

For t = 1, 2, 3, ...

- 1: Estimate: $\hat{f}_t, \hat{g}_t | \mathcal{D}_t$
- 2: Acquisition on \mathcal{L} : $x_t = \arg \max_{x \in \mathcal{L}} \alpha(x|\hat{f}_t, \hat{g}_t)$
 - ▷ balances exploration-exploitation and safety
 - \triangleright augment data \mathcal{D}_{t+1}
- 3: **If** error(\mathcal{L}) < ϵ :

New 1d subspace \mathcal{L} at best point \hat{x}_t in *random* direction

$$\mathcal{D}_0 = \{\}$$

For
$$t = 1, 2, 3, ...$$

- 1: Estimate: $\hat{f}_t, \hat{g}_t | \mathcal{D}_t$
- 2: Acquisition on \mathcal{L} : $x_t = \arg \max_{x \in \mathcal{L}} \alpha(x|\hat{f}_t, \hat{g}_t)$
 - ▷ balances exploration-exploitation and safety
 - \triangleright augment data \mathcal{D}_{t+1}
- 3: **If** error(\mathcal{L}) < ϵ :

New 1d subspace \mathcal{L} at best point \hat{x}_t in *random* direction

$$\mathcal{D}_0 = \{\}$$

For t = 1, 2, 3, ...

- 1: Estimate: $\hat{f}_t, \hat{g}_t | \mathcal{D}_t$
- 2: Acquisition on \mathcal{L} : $x_t = \arg \max_{x \in \mathcal{L}} \alpha(x|\hat{f}_t, \hat{g}_t)$
 - ▷ balances exploration-exploitation and safety
 - \triangleright augment data \mathcal{D}_{t+1}
- 3: **If** error(\mathcal{L}) < ϵ :

New 1d subspace \mathcal{L} at best point \hat{x}_t in *random* direction

the GUI

- by Jaime, Jochem, Nicole, J.

& contributions by Marco B., Nicolas L.

Results on HIPA

HIPA Tuning: Setup

Objective: Minimize combined losses (M4HIPA:VERL:2)

HIPA Tuning: Setup

Objective: Minimize combined losses (M4HIPA:VERL:2)

Tuning Parameters: 5-16 Quadrupole Magnets

HIPA Tuning: Setup

Objective: Minimize combined losses (M4HIPA:VERL:2)

Tuning Parameters: 5-16 Quadrupole Magnets

Constraints:

- About 200 loss monitors with individual warning levels
- \triangleright Combined into a single constraint with max(···).

Effective control rate: ~ 5 seconds / step

HIPA Tuning (Performance)

HIPA Tuning (Analysis)

Results on SwissFEL

SwissFEL Tuning: Setup

Objective: Shot-by-shot FEL intensity

SwissFEL Tuning: Setup

Objective: Shot-by-shot FEL intensity

Tuning Parameters: Quadrupole Magnets, Beam Position, Undulator K-Values

SwissFEL Tuning: Setup

Objective: Shot-by-shot FEL intensity

Tuning Parameters: Quadrupole Magnets, Beam Position, Undulator K-Values **Constraints**:

Loss monitors (not used because of technical difficulties)

Effective control rate: 0.5-1 second / step

SwissFEL Tuning (24 parameters)

SwissFEL Tuning (24 parameters): Parameter Solutions

SwissFEL Tuning (24 parameters)

SwissFEL Tuning (Slice Plot)

Conclusion & On-Going Work

We found:

- ▷ Bayesian Optimization is feasible for safe tuning
- ▷ Relatively complex to set up
- ▷ CMA-ES often competitive performance, simpler to set up, but does not explicitly take constraints into account.

On-Going:

- Use new tools on startups
- Make GUI (more) production safe
- Code-base relatively complex, difficult to maintain? Merge with OCELOT?