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Task 1: Beam Optimization at SwissFEL

Objective: Beam intensity
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Task 2: Loss Minimization at HIPA

Objective: Minimize proton losses
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Optimizing Black-Box Functions

Formal objective:

x∗ = arg max
x∈X

f (x)

. Parameter space X ⊂ Rd

. Weak assumptions on f : smoothness, but not convex, no analytical form, . . .

Get noisy point evaluations y = f (x) + ε

. Noisy Zero-Order Access / Blackbox

. No access to gradients

. Evaluations of f are ‘expensive’: sample efficiency is important
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Optimization Techniques: Overview

Grid search

. Good for small problems with little noise

Local Methods

. Follow estimated gradient

. Nelder-Mead

. Random walk

Evolutionary Algorithms

. Keep a population of candidates and refine

. E.g. CMA-ES, Particle Swarm

Global Methods

. Bayesian Optimization (this talk)

4



Optimization Techniques: Overview

Grid search

. Good for small problems with little noise

Local Methods

. Follow estimated gradient

. Nelder-Mead

. Random walk

Evolutionary Algorithms

. Keep a population of candidates and refine

. E.g. CMA-ES, Particle Swarm

Global Methods

. Bayesian Optimization (this talk)

4



Optimization Techniques: Overview

Grid search

. Good for small problems with little noise

Local Methods

. Follow estimated gradient

. Nelder-Mead

. Random walk

Evolutionary Algorithms

. Keep a population of candidates and refine

. E.g. CMA-ES, Particle Swarm

Global Methods

. Bayesian Optimization (this talk)

4



Optimization Techniques: Overview

Grid search

. Good for small problems with little noise

Local Methods

. Follow estimated gradient

. Nelder-Mead

. Random walk

Evolutionary Algorithms

. Keep a population of candidates and refine

. E.g. CMA-ES, Particle Swarm

Global Methods

. Bayesian Optimization (this talk)
4



Bayesian Optimization: Overview

For each step t = 1, 2, 3, . . . , n,

1: Compute probabilistic model of target

. Uses collected & prior data

. Gaussian process (GP) regression

2: Choose evaluation point

. Score function based on model

3: Noisy measurement yt = f (xt) + ε

. Update model

Return: return best measured or best predicted setting.
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Constraint Optimization

arg max
x∈X

f (x) s.t. g(x) ≤ 0

Safe Optimization:

. Iterates need to satisfy g(xt) ≤ 0

. Apriori unknown constraint function g

. Measure at x and observe f (x) + ε, g(x) + ρ

. Multiple constraints

At HIPA:

. Losses monitors, step-size constraints

At SwissFEL:

. Avoid electron losses, minimum signal
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Safe Bayesian Optimization: Illustration
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Scaling to High Dimensions (ICML paper)

Difficult optimization problem

D0 = {}

For t = 1, 2, 3, . . .

1: Estimate: f̂t , ĝt |Dt

. Gaussian process / kernel regression

2: Acquisition: xt = arg maxx α(x |f̂t , ĝt)
. balances exploration-exploitation and safety

. augment data Dt+1

3: If error(L) < ε:

New 1d subspace L at best point x̂t in random direction
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the GUI

- by Jaime, Jochem, Nicole, J.

& contributions by Marco B., Nicolas L.
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Results on HIPA
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HIPA Tuning: Setup

Objective: Minimize combined losses (M4HIPA:VERL:2)

Tuning Parameters: 5-16 Quadrupole Magnets

Constraints:

. About 200 loss monitors with individual warning levels

. Combined into a single constraint with max(· · · ).

Effective control rate: ∼ 5 seconds / step
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HIPA Tuning (Performance)
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HIPA Tuning (Analysis)
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Results on SwissFEL
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SwissFEL Tuning: Setup

Objective: Shot-by-shot FEL intensity

Tuning Parameters: Quadrupole Magnets, Beam Position, Undulator K-Values

Constraints:

. Lower bound on intensity

. Loss monitors (not used because of technical difficulties)

Effective control rate: 0.5-1 second / step

. Early test on new ATHOS beamline
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SwissFEL Tuning (24 parameters)
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SwissFEL Tuning (24 parameters): Parameter Solutions
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SwissFEL Tuning (24 parameters)
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SwissFEL Tuning (Slice Plot)
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Conclusion & On-Going Work

We found:

. Bayesian Optimization is feasible for safe tuning

. Relatively complex to set up

. CMA-ES often competitive performance, simpler to set up, but does not

explicitly take constraints into account.

On-Going:

. Use new tools on startups

. Make GUI (more) production safe

. Code-base relatively complex, difficult to maintain? Merge with OCELOT?
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