

Update on ObsBox and Loss maps studies

Speaker: Loïc COYLE

Acknowledgements:

T. Pieloni, M. Schenk, X. Buffat, M.Schenk, R. Bruce, R. De Maria, A. Meregh
D. Mirarchi, T. Persson

ObsBox

Quick recap

The ObsBox:

Figure 1: An overview of the LHC transverse feedback system (ADT).

- → rolling buffer & saves on trigger
- \rightarrow 65536 turns
- → bunch by bunch
- → transverse position data

The problem:

- The trigger is not very accurate : Most of the data does not contain any instabilities.
- → instabilities make up less than 1%!
 - Large amount of data ~4 TB
 - Very little labeled data collected manually

Quick recap

ADTObsBox

Raw beam amplitude data at a turn by turn and bunch by bunch resolution. → multivariate time series

Example: 07169_Inst_B1V_Q7_20180914_08h53m08s \rightarrow 2 unstable bunches

Principal Component Analysis

PCA vectors truncated to 4 components → ~93% variance explained

Quick recap

Quick recap

Linkage Tree

Conclusion

Quick recap

OBsBox:

- Anomaly detection for instability detection ~working
 - Refine the extracted features
 - Isolation forest hyper parameters
- Some preliminary (univariate) time series clustering ~working
- Proof of concept seems to produce coherent results
- Improvement:
 - More features → extend to run on cluster ~nearly working
 - Look into multivariate (multi-bunch) time series clustering
- Look into online use

Conclusion

Quick recap

OBsBox:

- Anomaly detection for instability detection ~working
 - Refine the extracted features
 - Isolation forest hyper parameters
- Some preliminary (univariate) time series clustering ~working
- Proof of concept seems to produce coherent results
- Improvement:
 - More features → extend to run on cluster ~nearly working
 - Look into multivariate (multi-bunch) time series clustering
- Look into online use

Anomaly detection V2 Cluster 1 Anomalies Cluster model Cluster 2 Anomaly detection Data stream triggers Cluster 3 False

~online

Anomaly detection V2 - Preprocessing

The 65536 turn buffer is split into 2048 smaller chunks.

Turn number

Anomaly detection V2 - Normalization

Each chunk is normalized

Turn number

Anomaly detection V2 - Model

Autoencoder based model:

→ Learns a latent space encoding useful for the clustering step?

 $\overline{}$

Anomaly detection V2 - Model

Autoencoder based model:

→ Convolutional autoencoder → image like representation in latent space

Reconstruct the input despite a bottle neck.

Layer (type)	Output	Shape	Param #
conv1d (Conv1D)	(None,	512, 64)	512
dropout (Dropout)	(None,	512, 64)	0
conv1d_1 (Conv1D)	(None,	128, 32)	14368
dropout_1 (Dropout)	(None,	128, 32)	0
conv1d_2 (Conv1D)	(None,	32, 16)	3600
dropout_2 (Dropout)	(None,	32, 16)	0
conv1d_3 (Conv1D)	(None,	8, 8)	904
conv1d_transpose (Conv1DTran	(None,	32, 8)	456
dropout_3 (Dropout)	(None,	32, 8)	0
conv1d_transpose_1 (Conv1DTr	(None,	128, 16)	912
dropout_4 (Dropout)	(None,	128, 16)	0
conv1d_transpose_2 (Conv1DTr	(None,	512, 32)	3616
dropout_5 (Dropout)	(None,	512, 32)	0
conv1d_transpose_3 (Conv1DTr	(None,	2048, 64)	14400
conv1d_transpose_4 (Conv1DTr			449
Total params: 39,217 Trainable params: 39,217 Non-trainable params: 0			=======

Anomaly detection V2 - Model

Autoencoder based model: $\overline{}$ Cluster → Learns a latent space encoding useful for the clustering step? Anomalies Cluster model $^{\circ}$ Anomaly detection Cluster 2 Data stream triggers \mathfrak{S} False Cluster ~online

Latent space encoding

Very dependent on the normalization method: **znorm**

Distribution surprising, was expecting the most frequently occurring signals to have the lowest error.

Very dependent on the normalization method: znorm train dataset -1

Alternative normalization: mean 0 constant normalization factor (center scale)

Losses is much more erratic, to be expected.

More like what I was expecting, lower errors occur more frequently.

Note the log scale.

Very dependent on the normalization method: center scale

Very dependent on the normalization method: center scale

Clustering

We could use the same Hierarchical clustering (using DTW) method as previously.

But I wanted to try to leverage the latent space encoding, learnt by the anomaly detection step.

KMeans on the top anomalous signals:

Probably injections, or orbit feedback turn on.

Probably beam dumps?

The interesting stuff, unfortunately, the different looking signals don't get clustered together.

But it is at least illustrative.

Loss maps

Previously

Loss map

Loss map

Tried many variations, no eureka moment.

Add cold region BLMs and cross check with known UFO events.

Ran into some technical problems (data storage issues), so it took a back seat to the ObsBox study.

Will pick it back up soon.

Conclusion

ObsBox:

- Online anomaly model
- Clustering with latent space encoding promising
- Figure out proper clustering model (instead of KMeans)
 - Hierarchical Clustering in latent space ?
 - Image based clustering methods?
- Multibunch instabilities feasible