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Quick recap
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Figure 1: An overview of the LHC transverse feedback sys-

tem (ADT).

— rolling buffer & saves on trigger
— 65536 turns

— bunch by bunch

— transverse position data

The problem:

e The trigger is not very accurate :
Most of the data does not contain any
instabilities.

— instabilities make up less than 1% !

e Large amount of data ~4 TB
e \Very little labeled data collected
manually



turns

ADTODbsBox Quick recap

Raw beam amplitude data at a turn by turn and bunch by bunch resolution. — multivariate time series

Example: 07169 _Inst B1V_Q7_20180914_08h53m08s — 2 unstable bunches
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PCA vectors truncated to 4 components — ~93% variance explained
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Principal Component Analysis
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Quick recap
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https://cernbox.cern.ch/index.php/s/F6m2LQlVVBvCK79
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Conclusion

OBsBox:
e Anomaly detection for instability detection ~working
o Refine the extracted features
o Isolation forest hyper parameters
e Some preliminary (univariate) time series clustering ~working
Proof of concept seems to produce coherent results
Improvement:
o More features — extend to run on cluster ~nearly working

o Look into multivariate (multi-bunch) time series clustering
e Look into online use

Quick recap
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Anomaly detection V2 - Preprocessing

Raw data

= 0 10000 20000 30000 40000 50000 60000 The 65536 turn bUffer iS Split
into 2048 smaller chunks.

Split data |

2600

2500

Turn number



Anomaly detection V2 - Normalization

Split data

2600

Each chunk is normalized

2500

10000 20000 30000 40000 50000 60000

znormed data

Turn number
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Anomaly detection V2 - Model

Autoencoder based model:
— Learns a latent space encoding useful for the clustering step?

model

Cluster 1
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Anomaly detection V2 - Model

Autoencoder based model:
— Convolutional autoencoder — image like representation in latent space

Reconstruct the input despite a bottle neck.

2048

L. » 8x8

A

2048

Layer (type) Output Shape Param #
convld (ConviD) (None, 512, 64) 512
dropout (Dropout) (None, 512, 64) [)
convld_1 (ConviD) (None, 128, 32) 14368
dropout_1 (Dropout) (None, 128, 32) [)
convld_2 (ConviD) (None, 32, 16) 3600
dropout_2 (Dropout) (None, 32, 16) [)
convld_3 (ConviD) (None, 8, 8) 904
convld_transpose (ConviDTran (None, 32, 8) 456
dropout_3 (Dropout) (None, 32, 8) [)
convld_transpose_1 (ConvliDTr (None, 128, 16) 912
dropout_4 (Dropout) (None, 128, 16) (]
convld_transpose_2 (ConvliDTr (None, 512, 32) 3616
dropout_5 (Dropout) (None, 512, 32) ]
convld_transpose_3 (ConvliDTr (None, 2048, 64) 14400
convld_transpose_4 (ConvliDTr (None, 2048, 1) 449

Total params: 39,217
Trainable params: 39,217
Non-trainable params: @
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Anomaly detection V2 - Model

Autoencoder based model:

— Learns a latent space encoding useful for the clustering step?

Data stream

Anomaly detection
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Anomaly detection V2 - Results

Very dependent on the normalization method: znorm

10 A
0.9 1
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05
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0.3 1

- training loss
- validation loss

L

Distribution surprising, was expecting the most
frequently occurring signals to have the lowest
error.
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Anomaly detection V2 - Results

Very dependent on the normalization method: znorm
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Anomaly detection V2 - Results

Very dependent on the normalization method: znorm
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The normalization is messing with the noise | |
level in signals when there is a sudden
offset — the reconstruction error is
abnormally low
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Anomaly detection V2 - Results

Alternative normalization: mean 0 constant normalization factor (center scale)
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Losses is much more erratic, to be expected.

More like what | was expecting, lower errors
occur more frequently.

Note the log scale.
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Anomaly detection V2 - Results
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Anomaly detection V2 - Results

Very dependent on the normalization method: center scale

20
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Using a different normalization method,
seems to produce more coherent
results. At the cost of more erratic
training.

| 'm also looking into using the derivative

of the signal instead.
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We could use the same Hierarchical clustering (using

Clusteri ng DTW) method as previously.

But | wanted to try to leverage the latent space
encoding, learnt by the anomaly detection step.
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Clustering - Latent space
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— image clustering methods

Could also be very useful for multibunch
instabilities, stacking of the images
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For now, standard K-Means to illustrate p 2000




Clustering - Latent space

KMeans on the top anomalous signals:

Probably injections, or orbit feedback turn on.
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Clustering - Latent space

”H

Probably beam dumps ?
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Clustering - Latent space

The interesting stuff, unfortunately, the different looking signals
don’t get clustered together.

But it is at least illustrative.
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Loss maps
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Loss map
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Found some confirmed anomalies.

Others not very clear, hard to interpret.
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Loss map

Tried many variations, no eureka moment.
Add cold region BLMs and cross check with known UFO events.

Ran into some technical problems (data storage issues), so it took a back seat to
the ObsBox study.

Will pick it back up soon.
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Conclusion

ObsBox:

e Online anomaly model
e Clustering with latent space encoding promising

e Figure out proper clustering model (instead of KMeans)
o Hierarchical Clustering in latent space ?
o Image based clustering methods ?

e Multibunch instabilities feasible
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