Contribution ID: $\mathbf{4 5}$
Type: Poster contribution

Thermal motion induced forbidden reflections

Thursday, 5 fuly 2012 10:30 (1h 30m)

Abstract

Reflections forbidden by crystallographic rules can be observed when the energy of incident x-rays is tuned to an absorption edge of the material. When the site symmetry of the resonant atoms is such that dipoledipole resonant scattering is also forbidden, one can still measure intensity at the position of the forbidden reflection: it is related to the transcient atomic displacements of the resonant atoms from their high-symmetry sites, due to thermal motion [1]. These so-called Thermal Motion Induced (TMI) resonant reflections have been measured in Germanium and Wurtzites crystals $\mathrm{ZnO}, \mathrm{GaN}$ and CdSe [2,4]. The intensity can be reproduced with a single low energy optical phonon mode. This experimental method can be used to measure atomic displacements correlations [3] and has potential applications to study systems with interesting electron-lattice coupling effects. It would benefit from the possibility to excite selectively a single optical phonon mode.

References:
[1] Dmitrienko V E and Ovchinnikova E N, Acta Cryst. A56, 340-347 (2000).
[2] Collins S P, Laundy D, Dmitrienko V E, Mannix D and Thompson P, Phys. Rev. B 68, 064110 (2003).
[3] Ovchinnikova E N, Dmitrienko V E, Oreshko A P, Beutier G and Collins S P, J. Phys.: Condens. Matter 22, 355404 (2010)
[4] Beutier G, Collins S P, Nisbet G, Ovchinnikova E N, Dmitrienko V E, Eur. Phys. J. Special Topics 208, 53-67 (2012).

Primary author: Dr BEUTIER, Guillaume (CNRS)
Co-authors: Prof. OVCHINNIKOVA, Elena (Moscow State University); Dr NISBET, Gareth (Diamond Light Source); Prof. COLLINS, Steve (Diamond Light Source); Prof. DMITRIENKO, Vladimir (Shubnikov Institute of Crystallography)
Presenter: Dr BEUTIER, Guillaume (CNRS)
Session Classification: Poster Session

Track Classification: Materials / Nanomaterials

