

Digital Twin(ning) Beyond the buzz word

A light sources perspective

Nicolas Leclercq - ESRF LEAPS Integrated Platform Workshop May 11th 2021

About this presentation

 Introduction to Digital Twin(ning) from a light source perspective [] = 23']

 Will be followed by a presentation of the ESRF-EBS Simulator by Simone Liuzzo [= 7']

The promise of the Digital Twin

LEAPS Integrated Platform Workshop May 11th 2021 **Data-driven technologies**⁽¹⁾ to enhance asset lifecycle management

A virtual twin to deliver smart [
 design → manufacturing → service → dismantling
]

(1) data-centric technics: advanced analytics, knowledge extraction, machine learning

The promise of the Digital Twin

Use cases?

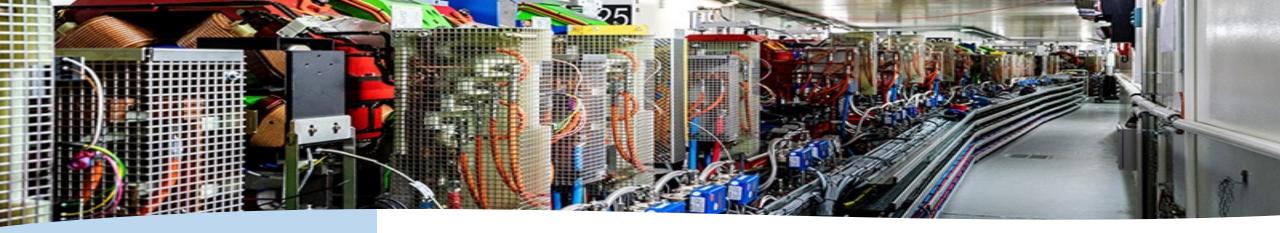
Place of physics-based simulation?

Role of control systems?

IT resources?

Digital Twin(ning) for Accelerator-based Light Sources?

What's beyond AI?


Added value?

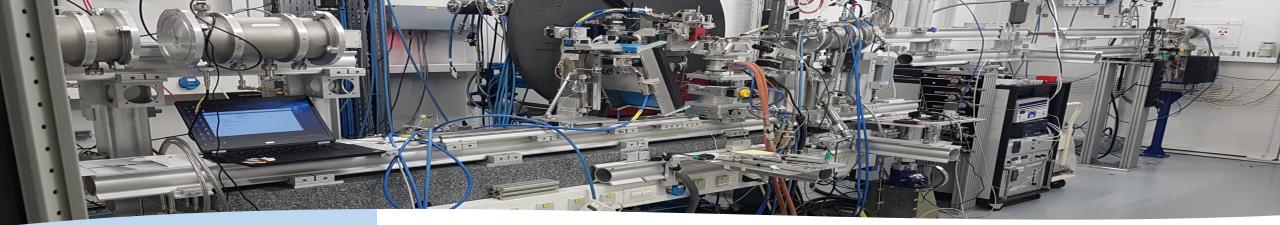
Deployment scale?

End-to-End simulation?

Cost?

Offline simulation capability?

1. maintain ultimate performances on both machine & experiments


• monitoring, controls, (hard and soft) real-time optimization

2. ensure high reliability & availability of the systems

- react to failures and maintain a proper maintenance plan
- maximize User-Beamtime / Total-Beamtime ratio

3. evolve while delivering beam to users

• design + R&D tools : simulation, testing, validation, training sandbox

How could DT enhance our ability to achieve these goals? How to go one step further using DT?

LEAPS Integrated Platform Workshop May 11th 2021

1. maintain ultimate performances on both machine & experiments

→ smart operation, advanced controls & feedbacks, AI-assisted decision-making → AI (ML & DL) - e.g., reinforcement learning for feedbacks

2. ensure reliability & availability of the systems

- → grail: minimized & planned downtime, "infinite MTBF"
- \rightarrow faults detection & diagnostics, predictive maintenance
- \rightarrow AI (ML & DL) e.g., unsupervised learning for predictive maintenance

3. evolve while delivering beam to users

- \rightarrow offline tools, virtual environments, high-fidelity simulations
- \rightarrow physics-based models and/or data-driven models⁽¹⁾
- \rightarrow AI (ML & DL) e.g., AI-augmented physics-based simulation

(1) ML models trained on real-world data

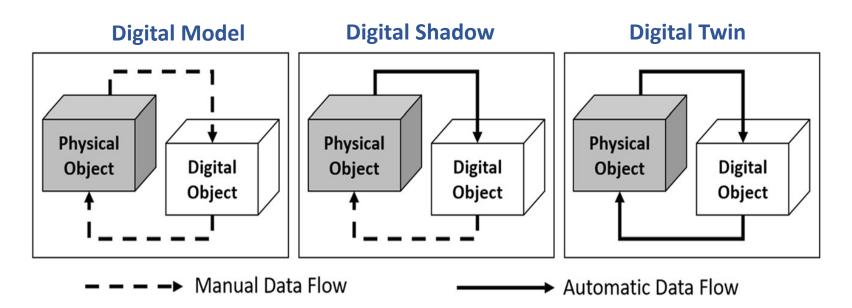
Digital Twinning (DT)

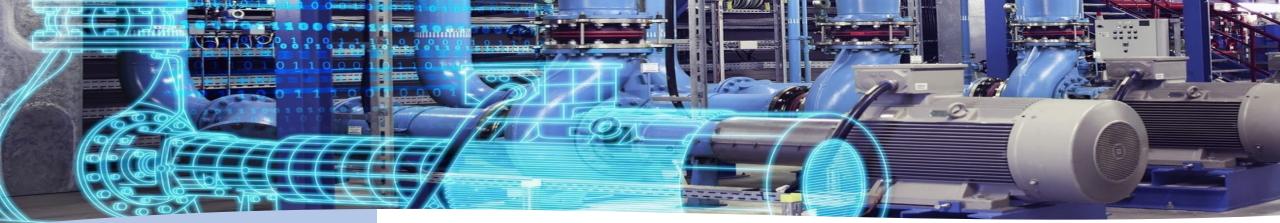
and the underlying data-driven technologies could indeed help...

About DT Definition

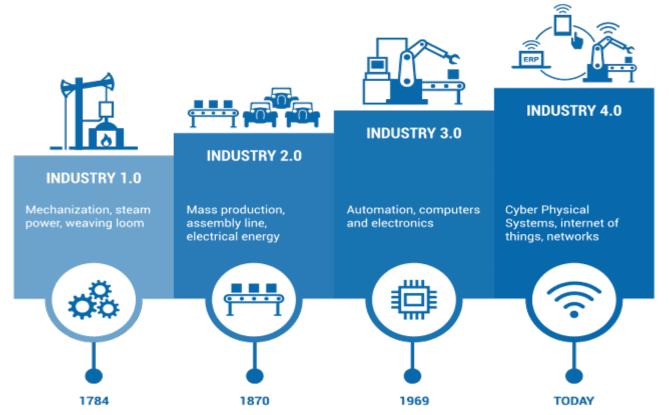
LEAPS Integrated Platform Workshop May 11th 2021 *Globally accepted definition:*

A virtual representation that serves as the **real-time**⁽¹⁾ **digital counterpart** of a **physical object** (or a process)


(from IEEE Xplore)


(1) twins coexist and are synchronized (mutual update)

About DT Definition


The definition of DT mainly relies on the *automatic, realtime* and *bidirectional* nature of the connection between the physical object and its digital equivalent

Core component of the Industry 4.0

digital transformation applied to industrial processes

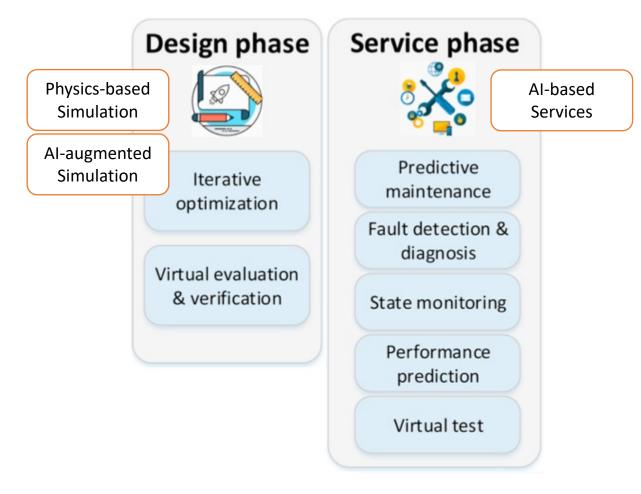
About DT Origin

About DT Purpose

Optimize⁽¹⁾ each phase of the lifecycle of the physical twin: $Design \rightarrow Manufacturing \rightarrow Operation (or Service) \rightarrow Dismantling using physics-based⁽²⁾ simulation, data-driven⁽³⁾ models and advanced analytics$

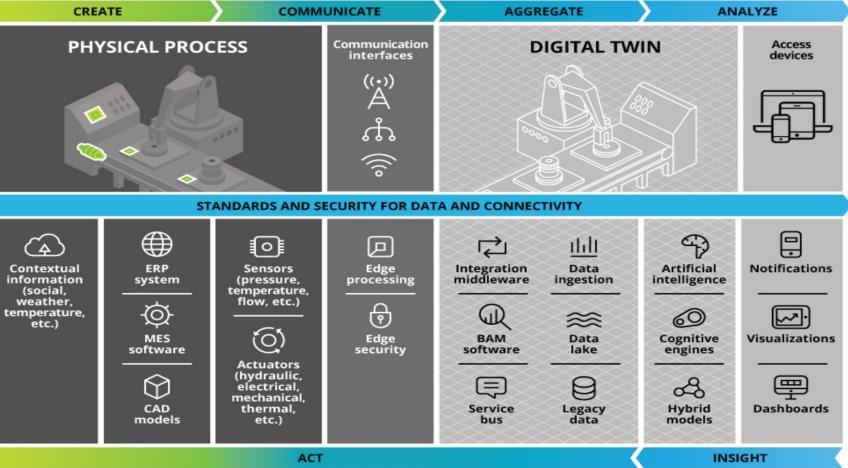
(1) in terms of performances & maintenance

(2) i.e., Physics-based simulation models


(3) e.g., Machine Learning models trained on time-series coming from the physical twin

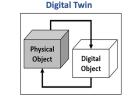
Most DT related works focus on a *Design* \rightarrow *Commissioning* \rightarrow *Operation* \rightarrow *Upgrade* cycle

About DT Features & Services



About DT Beyond the concept

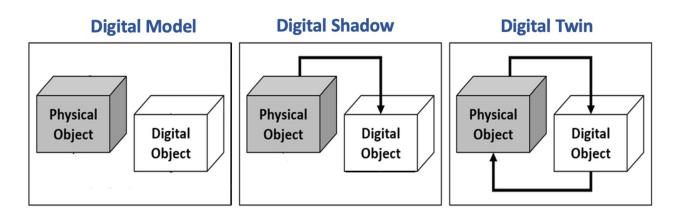
- Logical Architecture
 - DT as a single entity or an ecosystems of interconnected DTs (compositional approach)
- IT Architecture
 - the Cloud is the standard for DT (i.e., the DT is supposed to run in the Cloud)
 - Sensors -> Edge Computing -> Cloud -> Big Data solutions -> AI-based services
 - DT as a Service (REST/GraphQL API)
- Solutions exist
 - proprietary: General Electric, Microsoft Azure, Siemens, PTC, ...
 - open-source: Eclipse Foundation Hono (sensors connectivity) & Ditto (API, sponsor=Bosch)
 - ready to run your DT in the Cloud or deploy a private Cloud like infrastructure on premises?
- so, what's beyond the buzz word?
 - digital convergence platform, digital ecosystem
 - even more buzz words...


About DT The Industry 4.0 approach

LEAPS Integrated Platform Workshop May 11th 2021 The Control System (CS) as the foundations of a DT

- our control systems are already implementing part of the DT concepts
- sensors connectivity + edge computing \rightarrow CS agent (e.g., a Device instance in Tango)
- DT as a service \rightarrow yet another CS agent
- middleware for DTs interconnection \rightarrow CS native protocols
 - bidirectional data flow is just a question of reads & writes on CS agents
 - e.g., slow feedbacks are soft real-time optimizations mapping the DT model
- storage for time-series
 - e.g., TimescaleDB at the ESRF
- infrastructures for advanced analytics and models training
 - HPC clusters with GPUs

LEAPS Integrated Platform Workshop May 11th 2021 So, what is missing to switch from CS to DT?


- isn't it just a question of integrating AI-based smart services into the CS?
- predictive maintenance
 - easy, use supervised learning (ML and/or DL)
 - proper dataset? not so easy...
 - moreover, predicts the past, doesn't generalize very well to unknown situations
 - consider unsupervised approaches
 - The grail, expertise required
- smart operation
 - AI-based feedbacks
 - just feedbacks making use of AI (nothing to do with DT, so what?)
 - many potential uses cases for reinforcement learning
 - see recent "READS" paper from Fermilab (embedded AI platform for feedbacks)
 - Other use cases
 - smart monitoring, AI-assisted decision-making, ...

LEAPS Integrated Platform Workshop May 11th 2021 Beyond Extended Control System acting as a Digital Twin?

Other potential use-cases for light sources

- online and offline virtual environments
- contextualized simulation & testing: **online Digital Shadow**
- advanced simulation/replay/dev. env./training: offline Digital Model

LEAPS Integrated Platform Workshop May 11th 2021

One word about Physics-based Simulation vs Data-driven Models

- Physics-based model always more accurate than data-driven models...
 - based of laws of nature => no bias
- Data-driven model can capture uncertainty or unmodeled dynamics
 - Al-augmented simulation (improved overall model accuracy)
 - limit: as accurate as the dataset it learned from (doesn't generalize)
- Deep learning excels at complex (highly nonlinear) and/or high dimensional problems
 - blackbox, adapted where no time/no need/no way to fully understand the physics
- Other AI added-value in simulation context
 - deep learning applied to Reduced-Order Models (ROMs): simplified models for faster computation
 - data augmentation: GAN model to generate synthetic data similar to physical data
 - fast simulation: inference time of a trained model << computation of its physics-based equivalent
- Physics-based simulation and Data-driven Models complement each other
- AI can help to achieve Light Source End-to-End simulations

Conclusion

LEAPS Integrated Platform Workshop May 11th 2021

Takeaways

- Digital Twin(ning) is mainly an inspiring concept
- Requires a pragmatic transposition to light sources
- The control system can act as the foundations of a DT
- Al ubiquity for smart operation and maintenance
- Online & offline simulation also required

Conclusion

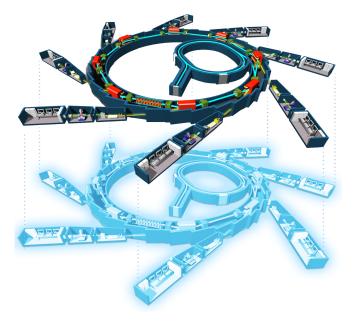
DT for a Light Source

Al-augmented Operation & Simulation

This workshop is the beginning of a long journey

Thanks!

Acknowledgments


Andy Götz - ESRF Simone Liuzzo - ESRF Clarisse Poidevin - CEA Simon White - ESRF

Pictures & Figures Credits

Etienne Abran CIO, Deloitte, ESRF, LEAPS, Thynkli, Valnaos, Xcelgo, XFEL

LEAPS Integrated Platform Workshop May 11th 2021

Enjoy this Workshop!

