SIMEX – a platform to perform start-to-end simulations of XFEL experiments

Juncheng E
SPB/SFX Group

LEAPS Integrated Platform Workshop
May 11th, 2021

juncheng.e@xfel.eu
What makes a successful experiment?

- How should the accelerator be configured to produce the “best” pulses?
- How do FEL components and configurations degrade, or enhance, experimental results?
 - e.g. Heat load influence on asymmetric crystal optics
- How do real pulses (e.g. SASE pulses with fluctuations), instead of idealised pulses, propagating through the instrument interact with the optics?

What makes a successful experiment?

- What will happen during the interaction?
- Does that influence what can be measured on the detector?

What makes a successful experiment?

1. Photon source
2. Photon propagation
3. Photon-Matter interaction
4. Signal generation
5. Detector response
6. Data analysis

- How much data is enough?
- What (detrimental) effects can be ameliorated by simply collecting more data?
- What's the smallest particle size practically visible in a single particle imaging experiment?

What makes a successful experiment?

- How should the accelerator be configured to produce the “best” pulses?
- What’s the definition of the “best” pulses?

What parameters can be understood/optimized through Start-to-end simulations

- Photon source
 - Pulse duration, repetition rate
 - Pulse (temporal and spatial) profile shape
 - Pulse energy
 - Beam wavelength
- Beamline optics
 - Optics (mirror, lens, monochromator, ...) parameters (profile, distance)
 - Beam wavelength
- Sample
 - Sample environment (water layer, ...)
- Detector
 - Geometry (detector distance)
- Data analysis methodology
 - Validate data analysis methodology
 - Estimate required amount of data/resolution limitation/

And more…

almost unlimited possibility
SIMEX platform

- **SimEx**: a python library for start-to-end simulations of complex photon science experiments
 - Calculators: APIs for advanced simulation codes
 - Generate input parameters for calculator backengines
 - **Start & monitor backengine execution**
 - Data APIs provide data to the calculators based on open metadata standards and hierarchical file formats (HDF5)

SimEx-Lite:
https://github.com/PaNOSC-ViNYL/SimEx-Lite
Under development
juncheng.e@xfel.eu

- Photon source
- Photon propagation
- Photon-matter interaction
- Signal generation
- Detector

- Wavefront OpenPMD extension
- Molecular Dynamics OpenPMD extension
- NeXus format

Data APIs

Data analysis
SIMEX system context diagram
SIMEX – a platform to perform start-to-end simulations of XFEL experiments

SIMEX container diagram
SIMEX – a platform to perform start-to-end simulations of XFEL experiments

Juncheng E, LEAPS Integrated Platform Workshop, May 11th, 2021

Component diagram
SIMEX – a platform to perform start-to-end simulations of XFEL experiments

Juncheng E, LEAPS Integrated Platform Workshop, May 11th, 2021

Workflow

Photon source
- Photon propagation
 - Wave optics
 - Raytracing

Photon-Matter interaction
- Photon-Matter interaction
 - Molecular dynamics
 - Particle-In-Cell
 - Radiation-Hydrodynamics

Source radiation field
- SASE pulse profile with fluctuation

Focus radiation field
- Wavefront data repository

Sample trajectory
- Electron structure
- Atom positions
- Density, temperature, pressure

Data analysis

Detector response
- NEXUS data format

Detector
- Detector noise

Signal generation
- Scattering
- Absorption
- Emission

Ideal signal
List of calculators

<table>
<thead>
<tr>
<th>Module</th>
<th>Simulation type</th>
<th>Code</th>
<th>Collaborators</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray source</td>
<td>FEL simulation</td>
<td>FAST-XPD</td>
<td>Yurkov, Schneidmiller, Manetti, Samoylova</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GENESIS in OCELOT framework</td>
<td>S. Reiche / G. Geloni et al.</td>
</tr>
<tr>
<td>Propagation</td>
<td>Coherent wavefront propagation</td>
<td>WPG/SRW [Data repository in preparation]</td>
<td>L. Samoylova, A. Buzmakov, O. Chubar</td>
</tr>
<tr>
<td>X-ray photon matter interaction</td>
<td>Atoms, molecules, clusters</td>
<td>XMDYN & XATOM</td>
<td>Z. Jurek et al. (CFEL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GROMACS</td>
<td>I. Dawod et al. (U Uppsala)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HF/LDA</td>
<td>H. Quiney et al. (U Melbourne)</td>
</tr>
<tr>
<td>Optical photon matter interaction</td>
<td>1D Rad-Hydro</td>
<td>Esther</td>
<td>Colombier et al. (CEA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PiConGPU</td>
<td>M. Bussmann et al. (HZDR)</td>
</tr>
<tr>
<td>Signal generation</td>
<td>Molecule, cluster scattering</td>
<td>SingFEL/skopi</td>
<td>C. H. Yoon (LCLS)</td>
</tr>
<tr>
<td></td>
<td>Plasma SAXS</td>
<td>paraTAXIS</td>
<td>T. Kluge et al. (HZDR)</td>
</tr>
<tr>
<td></td>
<td>Plasma Compton/Thomson</td>
<td>XRTS</td>
<td>G. Gregori, C. Fortmann-Grote</td>
</tr>
<tr>
<td></td>
<td>Crystal diffraction</td>
<td>CrystlFEL/pattern_sim</td>
<td>T. White et al. (CFEL)</td>
</tr>
<tr>
<td></td>
<td>Diffraction (large atomic system)</td>
<td>GAPD</td>
<td>J. C. E, S. N. Luo et al.</td>
</tr>
<tr>
<td>Detector simulation</td>
<td>EXAFS</td>
<td>FEFF8L</td>
<td>J. J. Rehr et al. (U Washington)</td>
</tr>
<tr>
<td></td>
<td>2D Pixel detectors</td>
<td>X-CSIT, Karabo</td>
<td>T. Rüter et al. (EuXFEL)</td>
</tr>
</tbody>
</table>

Developed actively and will be included in Lite; Implemented before, maintain on demand; Planned for future interfacing
Further work

• Real detector behaviours
 • If the detector performance is not good enough, even if the sample and other instrumentation behaves well, the experiment still may not succeed.
• Simulation result - XFEL source/beamline parameter feedback loop
 • Optimize the XFEL source/beamline parameters based on detector signal (e.g. diffraction pattern, spectrum) or reconstructed data (e.g. 3D orientation and phase reconstruction) quality.
• AI training cases
 • Estimate XFEL spectrum from machine parameters with AI algorithm
• Single particle imaging methodology understanding/optimization
 • Ascertain the smallest particle size practically visible in a single particle imaging experiment
• … and more
Challenges

- More user friendly code developments
 - Easy installation
 - Comprehensive documentations and examples
 - Best practice for high performance computing
 - Accessibility to different users
 - Encouraging more people to get involved

- User expertise
 - Every step of start-to-end simulation requires corresponding knowledge to understand the assumption and limitation of the simulation method to be used
 - Simulation database could be a solution
 - Machine learning use case
Acknowledgements

Adrian Mancuso, Carsten Fortmann-Grote, Michal Stransky, Chan Kim, Thomas Kluvyer, Yoonhee Kim, Raphaël de Wijn, Marcin Sikorski, Johan Bielecki, Henry Kirkwood, Liuba Samoylova, Alexey Buzmakov, Juncheng E

Beata Ziaja-Motyka, Zoltan Jurek

Ibrahim Dawod, Carl Caleman, Nicusor Timneanu

Shen Zhou, Duane Loh

Chuck Yoon, Christopher Mayes, Jacek Krzywinski, Hugo Slepicka, Paul Fuoss

Oleg Chubar, Maksim Raktin

Axel Huebl

Aljosa Hafner (CERIC-ERIC), Mads Bertelsen (ESS), Mousumi Upadhyay Kahaly, Zsolt Lecz (ELI-HU), Shervin Nourbakhsh (ILL), Manuel Sanchez del Rio (ESRF)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 654220 and 823852
Links & References

Links

- SimEx: https://github.com/PaNOSC-ViNYL/SimEx
- SimEx-Lite: https://github.com/PaNOSC-ViNYL/SimEx-Lite
- SimEx Documentation: https://simex.readthedocs.io/en/latest/
- SimEx Jupyter-notebooks: https://github.com/PaNOSC-ViNYL/SimEx-notebooks
- openPMD: https://github.com/openPMD
- NeXus: https://www.nexusformat.org/
- PANOSC-ViNYL: https://github.com/PaNOSC-ViNYL/ViNYL-project

References

- C. H. Yoon et al., Scientific Reports 6 24791 (2016)
- C. Fortmann-Grote et al., IUCrJ 4, 560–568 (2017)
- C. Fortmann-Grote et al., in Advances in Computational Methods for X-Ray Optics IV vol. 10388 103880M. doi: 10.1117/12.2275274
- J. C. E et al., in preparation