Machine Learning @DESY (M) ML for operation

LEAPS Integrated Platform Workshop Annika Eichler, Accelerator Beam Control Group, DESY

11.05.2021

Challenges for the operation

Diverse landscape of accelerators at DESY

Challenges for the operation

Facilities with many, highly diverse and distributed components

(II) œ

LMHOLTZ

DE'SY.

Large number of sensors & components Beam line devices ...

Digitalization challenge & prospective of large scale accelerators at the example of EU/FEL | hisubstor Workshop 6, Berlin | Holger Schlarb, 17.052019

THz spectrometer

Diplicatization challence & prospective of large scale accelerators at the example of BUXEEL I hisubstor Workshop 6. Berlin I Holper Schlarb. 17.05.2019

Challenges for operation

High data intensity

- > 10 million control parameters ٠
- > 700.000 local archives •
- > 20.000 high data rate channels ٠
- > 30 TB/day written to DAQ ٠ (compressed)
- DAQ stores data for ~7 days ٠
- In total: < 1% sent from front-ends ٠

DMA

TCP

Courtesy: T. Wilksen

Challenges and goals

Challenges

For the operation of particle accelerators (e.g. EuXFEL)

- Largely distributed
- Various types of systems
- Strongly coupled subsystems
- Highly nonlinear processes
- High dimensionality
- High data intensity
- Hardly any long-term data available
- Heterogeneous signals
- Limited access to key observables

Goals

Increasing demand on:

- Performance
 - 0.01% RF phase/ampl.
 - fs arrival time at km scale
 - µm x-y orbits
- Flexibility
 - Switching bunch patterns
 - Multi-beamline operation
- Availability
 - Ideally 99%
 - Reduce setup times
 - Reduce tuning times
 - Predict problems

ML as enabler for increased automation to autonomy

Topics of research

- Data acquisition and data analysis (pipelines)
 - Get all relevant signals and provide understanding
 - Provide data infrastructure
- Fault diagnosis and supervisory control
 - Predict faults, prevent failures
 - Protect the system
- (Surrogate) modelling, simulations, digital twins
 - Understanding physics
 - Requirement for predictions, development and control
- Optimization and feedback control algorithms
 - Push the way of operation
 - Optimize performance

T. Gamer et. al., "The autonomous industrial plant -future ofprocess engineering, operations and maintenance," 12th IFAC Symposium DYCOPS, vol. 52, no. 1, pp. 454–460, 2019.

Autonomy levels

(0)

intelligence

Data acquisition and data analysis (pipelines)

Get all relevant signals and provide understanding

- Long-term DAQ system for a subsystem: Build a complete long-term data acquisition system for the optical synchronization system at European XFEL
 - Data scope:
 - 50'000+ data channels (configuration + monitoring),
 - In total > 150 MB/s data to data acquisition system
 - \rightarrow Data reduction necessary (to meet 100 TB/y)
 - ~ 1% of the European XFEL

Data acquisition and data analysis (pipelines)

Get all relevant signals and provide understanding

• Data analysis and control pipeline: for supporting decision-making and analysis of beam optics, first test at PETRA III based on kafka (M. Boese, I. Agapov)

© DESY

• Standardize interfaces: between algorithms and

simulations / machines

(J. Kaiser, O. Stein)

Fault diagnosis and supervisory control

Predict faults and protect the system

- Anomaly detection: for SRF cavities at European XFEL (1.5 GB/s) (Ayla Nawaz)
 - Online implementation of anomaly detection: Trip event logger (Online trip analysis, 18 MHz sampling frequency) (Jan Timm)

.

٠

(Surrogate) modelling, simulations, digital twins

Understanding physics, requirement for predictions, development and control

Modelling for model-based control / diagnosis: Data-based nonlinear modeling exploiting physical . understanding by Koopman operator theory for SRF cavities at European XFEL (W. Haider, A. Eichler)

In-phase field [MV/m]

- More precise model as grey-box one
- 1000 times faster in evaluation for fault detection (Kalman filter)
- Set-point independent
- Modelling for fast simulations: Surrogate model for the injector of European XFEL using neural networks (J. Zhu)

0.4

0.6

0.8

Time [ms]

measured

Koopman-based identification

1.4

1.6

1.8

nonlinear identification

1.2

[m/vM]

field [

Quadrature 5

0.2

0.4

0.6

0.8

neasured

Time [ms]

Koopman-based identification

1.2

1.4

1.6

1.8

nonlinear identification

(Surrogate) modelling, simulations, digital twins

Understanding physics, requirement for predictions, development and control

- Neural network based surrogate model of LPA experiment
 - Data from LUX laser-plasma accelerator trains a surrogate model and enables single-shot predictive modeling of the plasma electron properties
 - Paves the way for active feedback + stabilization and virtual diagnostics
 - *M. Kirchen et al., "Optimal beam loading in a laser-plasma accelerator" PRL 126, 174801 (2021)*^{Model}

- OCELOT: Multiphysics simulation toolkit (already started in 2014) (S. Tomin/ I. Agapov)
 - Charged particle beam dynamics module (CPBD)
 - Native module for spontaneous radiation calculation
 - FEL calculations: interface to GENESIS and pre/post-processing

Optimization and feedback control algorithms

Push the way of operation, optimize performance

OCELOT Optimizer: Platform for automated • optimization of accelerator performance (S. Tomin/ I. Agapov)

https://github.com/ocelot-collab/optimizer

Physics-based deep neural networks: NN-based beam adjustable orbit and optics control for •

* Andrei Ivanov and Ilya Agapov, "Physics-based deep neural networks for beam dynamics in charged particle accelerators", Physical Review Accelerators and Beams 23, 07461 (2020)

storage rings* (A. Ivanov, I.Agapov)

Optimization and feedback control algorithms

Push the way of operation, optimize performance

• Reinforcement Learning for beam focusing : First steps of applying RL for beam focusing at ARES, collaboration project with KIT (J. Kaiser, O. Stein, A. Eichler)

Courtesy Jan Kaiser & Oliver Stein

Optimization and feedback control algorithms

Push the way of operation, optimize performance

- Machine Learning of Laser-Plasma accelerators: Surrogate modeling and Bayesian optimization at LUX
 - Optimization of electron beam parameters
 - LUX laser-plasma accelerator tunes to sub-percent energy spread beams using Bayesian optimization
 - S. Jalas et al. "Bayesian optimization of a laser-plasma accelerator" PRL 126, 104801 (2021)

Credits:DESY/SciCom Lab Courtesy: Sören Jalas

See next talk:

Bayesian optimization of a laser-plasma accelerator
Online, Zoom

Andreas Maier et al. 19:20 - 19:30

Thank you

Contact

www.desy.de

DESY. Deutsches Elektronen-Synchrotron

Annika Eichler MSK annika.eichler@desy.de +49 (0)40 8998 4041