Bayesian optimization of a laser-plasma accelerator

Sören Jalas

Center for Free-Electron Laser Science University of Hamburg, Germany soeren.jalas@desy.de

Laser-plasma acceleration State of the art

Advantages

- + 100 GV/m electric fields
- + compact size
- + intrinsic synchronization
- + fs bunch duration
- + pC-nC charges
- + high peak current

Challenges

- beam quality
- increased stability
- kHz repetition rates

Tuning beam parameters High quality beams for FEL experiments

M. Kirchen et al., Optimal beam loading in a laser-plasma accelerator PRL 126, 174801 (2021)

Finding the optimum Curse of dimensionality

Just scan it?

Focus position: target length 5 mm / 0.05 mm = 100x0 to 100 % / 1 % = 100xDoping: Gas density: 0.5×10^{18} to 1×10^{18} cm⁻³/ 0.05×10^{18} cm⁻³ = 10x 2 J to 3 J / 0.1 J = 10xLaser energy:

> **1 000 000** measurements @ 1 Hz \rightarrow 11.5 days or years worth of computing budget for simulations

Finding the optimum Requirements

- Expensive PIC simulation
- Low repetition rate in experiments
- Slow machine controls

- Jitter

few evaluations / measurement

Unstable experimental condition

- Unknown function
- Potential local optima

global optimization

Young, energetic LPA (5) seeks mature optimization algorithm for adventurous exploration of costly and noisy data. 2+49 40 8998-0

 Low repetition rate in experiments Jitter

Slow machine

Efficient Global Optimization of Expensive **Black-Box Functions**

DONALD R. JONES¹, MATTHIAS SCHONLAU^{2,*} and WILLIAM J. WELCH^{3,**}

¹Operations Research Department, General Motors R&D Operations, Warren, MI, USA; ²National Institute of Statistical Sciences, Research Triangle Park, NC, USA; ³Department of Statistics and Actuarial Science and The Institute for Improvement in Quality and Productivity, University of Waterloo, Waterloo, Ontario, Canada

Bayesian optimization Basic concepts

Build surrogate model Gaussian process regression

Acquisition function describes potential of next evaluation

Perform evaluation where acquisition function is largest

Refine model with new knowledge

FBPIC simulations

Experimental setup LUX laser-plasma accelerator

S. Jalas et al., Bayesian optimization of a laser-plasma accelerator, PRL 126, 104801 (2021)

 Motorised telescope + attenuator for laser control 3 channel Mass Flow Control for target setup High resolution electron diagnostic • Fully incorporated in DOOCS control system

Bayesian optimization High quality electron beams

Summary

- Machine learning based optimization of a laser-plasma accelerator
- Combined workflow for optimizing simulations + experiment
- Showed reliable generation of sub percent energy spread electron beams
- Single-shot accurate surrogate model for future feedback and virtual diagnostics

For more details see our recent publications:

PHYSICAL REVIEW LETTERS 126, 104801 (2021)

Bayesian Optimization of a Laser-Plasma Accelerator

Sören Jalas¹,^{*} Manuel Kirchen¹, Philipp Messner,^{2,1,3} Paul Winkler,^{3,1} Lars Hübner,^{3,1} Julian Dirkwinkel[®],³ Matthias Schnepp,¹ Remi Lehe,⁴ and Andreas R. Maier[®]^{3,1}

Manuel Kirchen[®],^{1,*} Sören Jalas[®],¹ Philipp Messner,^{2,1} Paul Winkler,^{3,1} Timo Eichner,¹ Lars Hübner,^{3,1} Thomas Hülsenbusch,^{3,1} Laurids Jeppe[®],¹ Trupen Parikh,³ Matthias Schnepp,¹ and Andreas R. Maier^{®3,1}

PHYSICAL REVIEW LETTERS 126, 174801 (2021)

Optimal Beam Loading in a Laser-Plasma Accelerator