Accurate & Confident Prediction of Electron Beam Longitudinal Properties using Spectral Virtual Diagnostics

Adi Hanuka SLAC National Laboratory Stanford University May 12th 2021

adiha@slac.stanford.edu

NATIONAL ACCELERATOR LABORATORY

Outline

- 1. ML-based virtual diagnostics (VD) Motivation & Background.
- 2. Spectral virtual diagnostic 3 case studies:
 - a. Improved accuracy over scalar VD (LCLS)
 - b. Shot-to-shot prediction of fine features (LCLS-II)
 - c. Going beyond current diagnostic resolution (FACET-II)
- 3. Incorporating uncertainties know what we don't know.
- 4. Summary

Motivation

Accurate characterization of beams is required to successfully meet experimental goals.

Current diagnostic methods for measuring LPS are destructive or have insufficient resolution.

Machine learning based diagnostics can predict the beam properties on shot-to-shot basis non-destructively during transport and delivery to experiments.

ML-based Virtual Diagnostics

<u>Goal</u>: Get otherwise unavailable (single-shot) information about the beam nondestructively to improve machine characterization, optimization, and data analysis.

- Once trained, fast to execute!
- Train on measured data and/or (slow) high fidelity simulations.

Background: Scalars Virtual Diagnostics (VD)

*May be exacerbated in more complicated accelerator operation modes.

Our Solution: Spectral Virtual Diagnostic (VD)

Neural Network– mapping millions of inputs to similarly numerous outputs.

VD Class in Python is easy to use

from VD_class import VD

vd = VD(spectrum, Iz)

Iz_predict = vd.vd_trainer(batch_size=64, epochs=500, mc=False, mbi=False)

get_model
fit_model
predict_model

Layer (type)	Output Shape	Param #
input_26 (InputLayer)	(None, 5)	0
dense_101 (Dense)	(None, 200)	1200
dense_102 (Dense)	(None, 100)	20100
dense_103 (Dense)	(None, 50)	5050
dense_104 (Dense)	(None, 150)	7650
Total params: 34,000 Trainable params: 34,000 Non-trainable params: 0		

loss: 7.725056511245074e-05 Validation loss: 0.0001323133176889696 Test loss: 9.489419417711619e-05 Test accuracy: 0.004323772620409727

from spec_utils import *

plot_Iz_vs_VDscalar_vs_spec(y_test,y_pred_scalar,y_pred_spec,nrow=nrow,ncol=5, rnd=False, idx=[32,86,150,782,118])

Outline

- 1. ML-based virtual diagnostics Motivation & Background.
- 2. Spectral virtual diagnostic 3 case studies:
 - a. Improved accuracy over scalar VD (LCLS)
 - b. Shot-to-shot prediction of fine features (LCLS-II)
 - c. Going beyond current diagnostic resolution (FACET-II)
- 3. Incorporating uncertainties know what we don't know.
- 4. Summary

Accurate & Confident Predictions - Case Studies

Accuracy would come from designing the neural network architecture & its training. Confidence would come from various methods depending on the case.

LCLS

- Experimental
- 1D/2D outputs

LCLS-II

- Microbunching
- Elegant SC SXR simulation

Confidence

Comparing Scalar VD vs Spectral VD

Prediction uncertainty from ensemble

FACET-II

- 2-bunch mode
- Lucretia simulation

Correlating prediction with spectral intensity

Improved accuracy over scalar VD (LCLS)

Train on ~4000 examples ; Test on ~600 examples.

Spectral VD has lower MSE than scalar VD.

LCLS Experiment:

Machine parameters scanned: L1s phase from -21 to -27.8 deg BC2 peak current from 1 to 7 kA

Inputs to Scalar VD: L1s voltage & phase, L1x voltage, BC1 and BC2 current

- Scalar VD: Optimized NN architecture compared to prior work consistently improved by 15%.
- Improved accuracy of the spectral VD.

Spectral VD better predicts LPS images (LCLS)

- Improved accuracy of the spectral VD*.
- Increased confidence from multiple diagnostic predictions.

**MSE=0.054,0.079* ; *SSIM=0.97,0.96* for *spectral*, *scalars* SSIM=structural similarity index measure [0,1]

Shot-to-shot prediction of fine features via ensembling (LCLS-II)

- 4000 Elegant simulations
- Ensemble of networks to obtain std

Predict current profile NMSE=1.1%

 $\text{NMSE}(y, \hat{y}) = \text{MSE} / \sum_{i=0}^{N-1} y_i^2$

Increasing prediction's confidence (LCLS-II)

A. Hanuka, Nature Scientific Reports 2021

Going beyond current diagnostic resolution (FACET-II)

Spectral VD resolves features that are beyond the TCAV limited resolution.

Accurate & Confident Predictions - Summary

Outline

- 1. ML-based virtual diagnostics Motivation & Background.
- **2.** Spectral virtual diagnostic 3 case studies:
 - a. Improved accuracy over scalar VD (LCLS)
 - **b.** Shot-to-shot prediction of fine features *(LCLS-II)*
 - c. Going beyond current diagnostic resolution (FACET-II)

3. Incorporating uncertainties - know what we don't know.

4. Summary

Incorporating Uncertainties – know what we don't know

Incorporating Uncertainties – Methods

Goal: Prediction sensitivity - quantify how reliable the mean prediction is.

1. Ensemble methods = a collection of neural networks

Random initializations

2. Quantile regression:

$$\begin{aligned} \boldsymbol{\xi}_i &= \boldsymbol{y}_i - f(\mathbf{x}_i) \\ \boldsymbol{\mathscr{L}}(\boldsymbol{\xi}_i | \boldsymbol{\alpha}) &= \begin{cases} \alpha \boldsymbol{\xi}_i & \text{if } \boldsymbol{\xi}_i \ge 0, \\ (\alpha - 1) \boldsymbol{\xi}_i & \text{if } \boldsymbol{\xi}_i < 0. \end{cases} \\ \boldsymbol{\mathscr{L}}(\mathbf{y}, \mathbf{f} | \boldsymbol{\alpha}) &= \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\mathscr{L}}(\boldsymbol{y}_i - f(\mathbf{x}_i) | \boldsymbol{\alpha}) \end{aligned}$$

Random data split

OOD Robustness

Methods: Ensembles (random initializations, random subset of the data, Bagging), Quantile regression.

Test shot within the trained distribution

Out-of-distribution

Out-of-Distribution \rightarrow Higher Uncertainty

 $\alpha_t = 1$ if $I_{\text{lower},t} < I_{\text{measured},t} < I_{\text{upper},t}$

Accuracy =

 $\sum_{t=1}^{T} \alpha_t \cdot I_{\text{measured},t}^2$

Common prediction errors with LPS images

Shot #789 - Shape error: the prediction is of the wrong shape

Shot #762 - Translational error: the prediction is in the wrong place

Alleviating Translational Error

Center of Mass Correction (Pred. \rightarrow Truth)

Summary of Virtual Diagnostics

Non-destructive, shot-to-shot of bunch diagnostic during transport and delivery to experiments.

- Fast & online doesn't require convoluted data processing.
- Fill in **missing** information high peak current, repetition rate, etc.
- Understand **exotic** configs by combining ML model with simulation.
- Reverse engineering of machine settings for a pre-defined current profile.

Spectral VD:

- Increase confidence flag bad shots by cross check with scalars VD.
- Improved accuracy over scalars VD.
- In some cases is the only option! (e.g. microbunching)

Quantify prediction sensitivity:

- Flag **bad** predictions.
- Flag a **change** in the machine out-of-distribution prediction.

ML-based virtual diagnostic for single shot prediction will provide additional information for users, and a signal for LPS feedback, tuning and control.

Thanks to the wonderful team!

O. Convery

C. Emma

Z. Huang

M. Hogan

A. Fisher

T. Maxwell

B. Jacobson

Y. Gal

deepart.io

Hanuka, Nature Scientific Reports 11, 2945 (2021) Convery, arxiv 2105.04654 (2021)

~

Thank You!

This work was supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC02-76SF00515.

NATIONAL ACCELERATOR LABORATORY

