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Why experimental data-driven modeling? 

- Collective effects are simulated with

different theoretical assumptions.

- Electron emission process from a

photocathode is highly simplified.

- Simulation does not take into account

aging and imperfection of accelerator

components.

- High-resolution simulation can be

prohibitively expensive.

0D - 0D surrogate model

with simulation data
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Encoder-decoder structure

J. Zhu, Y. Chen,  F. Brinker, W. Decking, S. Tomin, H. Schlarb, arXiv:2101.10437

- Demonstrate neural networks can generate an explicit mapping between the input and the output

mega-pixel images in a continuous space with reasonable computational resources and data.

- Propose a way of building scalable, explicable and maintainable applications for a (sub) system.

min

https://arxiv.org/abs/2101.10437
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Data collection and processing

WP1 WP2

Gun phase (deg) -3 ~ 3 -3 ~ 3

A1 phase (deg) -6 ~ 6 -6 ~ 6

AH1 phase (deg) -6 ~ 6 \

AH1 gradient … 0

- 3000 shots for each working point (80/20 split)

- With NVIDIA Tesla P100 

Training: ~10 hours (not fully optimized), 

Prediction (single image): ~ 20 ms

1750 x 2330 – 768 x 1024
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Prediction Quality

Current profile Energy spectrum Energy spreadSSIM: ~0.995, MSE: ~3 x 10-5
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Explicability, Scalability and Maintainability

Encoder (WP1) Decoder (LPS)

Encoder (WP1)

Encoder (WP2)

Decoder (LPS)

Encoder (WP1)

Encoder (WP2)

Decoder (LPS)

Decoder (…)

- Reduce the input parameter space.

- Time interval between data collections of

different working points can be long.

- Number of input data and the type of input

data can change over time.

- Software engineering

Code vs Code + data + weights

- Benefits of multi-task learning.
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Demonstration of shared decoder

Encoder (WP1) Decoder (LPS)

Encoder (WP1)

Encoder (WP2)

Decoder (LPS)

Train encoder for WP2 only

Encoder (WP1)

Encoder (WP2)

Decoder (LPS)

Fine tune all

Measured
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Hardware acceleration

- High throughput and extremely low latency (e.g. intra-bunch feedback)

Collaboration with G. Fey, A. A. Zoubi, G.

Martino from TUHH.

A preliminary benchmark study will be

presented at Intelligent Process Control

Seminar at DESY soon.
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Summary

- Neural network trained only with experimental data can make high-fidelity

predictions of mega-pixels images of electron beam profile.

- The encoder-decoder structure can possibly be applied to other (sub)system

in a scientific facility. For example, a scientific instrument after the photon

beamline.


