

beam sharing in cyclotron-based proton therapy facilities

M.J. van Goethem^{1,2}, V. Anferov³, S. Brandenburg², J.M. Schippers^{1,4}, N. Schreuder³, A.A. van 't Veld¹

¹ University Medical Center Groningen
² Kernfysisch Versneller Instituut, Groningen
³ ProCure, Bloomington IN
⁴ PSI, Villigen

PARTREC PARTICLE THERAPY RESEARCH CENTER

outline

- proton therapy market
- current facility operation
- fast switching
- beam splitting
- conclusions

EU proton therapy market

- population
- cancer incidence
- X-ray radiotherapy
 - treatment units
- annual turnover
- proton therapy
 - treatment units
- market proton therapy
 - patients with expected benefit
 - study Dutch Health Council, 2009
 - treatment units/centers
 - $\acute{\upsilon}$ large expansion possible
 - what needs to be done to realize it ?

- 2.7 million per year
- ~1.4 million treatments per year
- ~3500

~15 billion € (< 1 % total healthcare)
2050 treatments per year (2011)

200000 per year

~600/200

EU proton therapy market

- key requirements for expansion
 - more coordinated clinical validation studies
 - better treatment quality
 - scanning techniques
 - treatment planning
 - treatment verification
 - lower treatment cost
 - at this moment typically $3 \times X$ -ray treatment
 - ingredients
 - investment reduction $\acute{\upsilon}$ compactness
 - operation efficiency $\acute{\upsilon}$ workflow optimization

proton therapy facilities

- mostly multiple treatment rooms lacksquare
 - single accelerator
 - single degrader + energy selection system (ESS)
 - **ΰ** interference between treatment rooms

treatment delivery scheme

- scattering
 - "connect" degrader + ESS + beam line with gantry
 - tune degrader + ESS + beam line + gantry for maximum energy
 - deliver radiation field(s)
 - possibly retune for other energy inbetween fields
- scanning
 - "connect" degrader + ESS + beam line with gantry
 - tune degrader + ESS + beam line + gantry for starting energy
 - deliver radiation field(s)
 - retune for small energy steps inbetween layers
- frequent retuning 20 30 parameters
 verification of tune (beam position, transmission etc.)
- $\acute{\upsilon}$ simplify by reduction # parameters

beam use pattern

- long waiting times due to interference
- significant time for switching and tuning

sb/ECPM1205/7

fast switching: facility lay-out

- fast kicker to switch between treatment rooms
 - already implemented at MPRI
- magnetic septum to increase separation
- integrate degrader + ESS in treatment unit

fast switching: degrader + ESS lay-out options for ESS separate magnets in front of gantry • most magnets already there! septum magnet kicker degrader energy selection

S KVI sb/ECPM1205/9

PARTREC | PARTICLE THERAPY RESEARCH CENTER

fast switching: degrader + ESS lay-out

- options for ESS
 - separate magnets in front of gantry
 - integrate in gantry (cf. IBA Proteus One)
 - neutron shielding inside rotating gantry

fast switching: beam control

- beam on off switching
 - kicker (kicker off = beam off)
 - cyclotron (ion source/deflector central region)
- beam intensity during irradiation
 - ion source / deflector central region
- essentially same as current practice

fast switching: further possibilities

- interleaved irradiations in different rooms
 - multiple fields
 - fast volumetric scanning and repainting (moving tumors)
- combine with high dose rates
- $\acute{\upsilon}$ further reduction waiting times and interference

fast switching: balance sheet

- productivity gain
 - logistics simulation study on-going
- shorter waiting time $\acute{\upsilon}$ smaller patient position error
- simplification operation
 - increased modularity (control system)
 - fixed tune main beam line: permanent magnets demonstrated: Fermilab antiproton storage ring
- higher investment
 - kicker and septum magnets (power supplies)
 - additional shielding degrader + ESS
 - less possibilities power supply sharing
 - possibly somewhat higher electricity cost/treatment
 - more equipment running simultaneously

beam splitting: towards real independence

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring

beam splitting: requirements

- beam optics
 - $\sigma(n) = R^n \sigma(0) (R^n)^T$; R transfer matrix septum septum
 - constant betatron phase advance septum septum
 - minimize overlap phase space area cut by each septum
 - wide beam at septum:
 - minimize septum losses
 - minimize sensitivity transverse beam motion
 - waist at degrader $\acute{\upsilon}$ convergent beam at septum
 - no quads main beamline between septa (steering)
 - focussing in septum magnet
- tuning beam distribution
 - septum position / steering magnets (parallel displacement)

- TURTLE calculation
 - beam profile before first split

• beam profile after first split

• beam profile before second split

PARTREC | PARTICLE THERAPY RESEARCH CENTER

• beam profile after second split

PARTREC PARTICLE THERAPY RESEARCH CENTER

• beam profile before third split

PARTREC PARTICLE THERAPY RESEARCH CENTER

• beam profile after third split

• beam profile before fourth split

• beam profile after fourth split

beam splitting: intensity control

- beam on off switching
 - kicker (kicker off = beam off)
 - beam stop
- beam intensity during irradiation
 - collimation in front of degrader
 - beam size at degrader (quadrupoles after magnetic septum)
 - deflection at degrader (electrostatic septum or other)

beam splitting: balance sheet

- productivity gain
- no waiting time $\acute{\upsilon}$ smaller patient position error
- simplification operation
 - increased modularity
 - fixed tune main beam line (permanent magnets?)
- higher investment
 - eletrostatic + magnetic septum + power supplies
 - additional shielding degrader + ESS
 - no possibilities power supply sharing
 - possibly somewhat higher electricity cost/treatment
 - more equipment running simultaneously
- more activation cyclotron, beam stops etc.

conclusions

- fast switching between treatment rooms straightforward
 - higher throughput
 - system simplification
 - investment
 - kicker + septum magnet
 - degrader
 - additional shielding
- beam splitting
 - true simultaneous operation
 - more additional shielding + activation
- fixed tune of main beam line $\acute{\upsilon}$ permanent magnets
 - demonstrated at Fermilab antiproton storage ring

- 230 MeV superconducting synchrocyclotron
 - pulsed beam ~1 kHz repetition rate
 - no fast scanning for moving targets

PARTREC | PARTICLE THERAPY RESEARCH CENTER

- 250 MeV superconducting synchrocyclotron
 - pulsed beam ~1 kHz repetition rate
 - no fast scanning for moving targets

- European Union data
 - population
 - cancer incidence
 - X-ray radiotherapy
 - treatment units
 - share hadrontherapy
 - treatment units
 - annual turnover

- 500 million
- 2.7 million per year
- 1.5 million per year
- ~3500
- < 1 % ~20
- ~10 billion € (< 1 % total healthcare)
- ~50 % of cured patients have undergone radiotherapy
- ~50 % of patients undergoing radiotherapy are cured
- ύ radiotherapy important element in cancer care

X-ray radiotherapy: equipment

- accelerating structure
 - standing wave coupled cavity linac (copper)
 - operating frequency: 3 GHz (S-band)
 - gradient ~30 MV/m Ú length ~1 m
- mature and robust technology (50 years experience)

Photon Generation in a Linear Accelerator

X-ray radiotherapy: equipment

- accelerator
 - standing wave coupled cavity linac (copper)
 - operating frequency: 3 GHz (S-band)
 - gradient ~30 MV/m Ú length ~1 m
- mature and robust technology (50 years experience)

X-ray radiotherapy: development LE CT, PET, MK. PET-CT Strap And CT, PET, MK A source SIEMENS

X-ray radiotherapy: development

- better exploitation imaging information: CT, PET, MRI
- optimize irradiation strategy: 3D-CRT ΰ IMRT ΰ VMAT

PARTREC | PARTICLE THERAPY RESEARCH CENTER

X-ray radiotherapy: development

- better exploitation imaging information: CT, PET, MRI lacksquare
- optimize irradiation strategy: 3D-CRT ΰ IMRT ΰ VMAT •
- motion: real time image guided radiotherapy •

X-ray radiotherapy: development

- better exploitation imaging information: CT, PET, MRI
- optimize irradiation strategy: 3D-CRT ΰ IMRT ΰ VMAT
- motion: real time image guided radiotherapy
- main progress driver: development ICT technology

• superior dose distribution $\acute{\mho}$ better treatment outcome

PARTREC PARTICLE THERAPY RESEARCH CENTER

- superior dose distribution $\acute{\upsilon}$ better treatment outcome
- irradiated volume non-specific tissue
 > 50 % reduction at all dose levels
- dose reduction critical organs 10 – 60 %

- superior dose distribution $\acute{\upsilon}$ better treatment outcome
- complex large scale system

- superior dose distribution $\acute{\upsilon}$ better treatment outcome
- complex large scale system

- superior dose distribution $\acute{\upsilon}$ better treatment outcome
- complex large scale system

- superior dose distribution $\acute{\upsilon}$ better treatment outcome
- complex large scale system

HI

synchrotron ¹²C 450 MeV per nucleon

gantry

- rotating mass 450 tons
- length 25 m
- diameter 13 m

- superior dose distribution $\acute{\upsilon}$ better treatment outcome
- complex large scale system

2 photon units

layout NRoCK, Kiel

PARTREC | PARTICLE THERAPY RESEARCH CENTER

- superior dose distribution $\acute{\upsilon}$ better treatment outcome
- complex large scale system
- very high investment cost
 - complete facility
 - irradiation setups
 - diagnostic tools (CT, PET, ^{*}
 - building
 - capacity 1500 patier
 - investment
 - X-rays
 - protons

atien smaller, cheaper and better nake it small sar make it 25 230 M€ (NRoCK, Kiel)

cart exper v r challen **⊿**ument

sb/ECPM1205/50

Inetration difficult..... even if better

PARTREC PARTICLE THERAPY RESEARCH CENTER

current status proton

- 96000 patients treated since 1954; 12000 in 2011
- Japan
 - 6 centers operational
 - 2 centers under construction
- China
 - 2 centers operational
 - 2 centers under construction
- Taiwan
 - 1 center under construction
- Europe
 - 12 centers operational
 - 7 centers under construction
- North America
 - 10 centers operational
 - 6 centers under construction

current status carbon

- 9000 patients treated since 1975; 2000 in 2011
- Japan
 - three centers operational: Chiba; Hyogo; Gunma
 - two centers under construction: Kyushu, Tohoku
- China
 - one experimental center operational: Lanzhou
 - one center under construction: Shanghai
- Europe
 - two centers operational: HIT, Heidelberg; CNAO Pavia
 - one center under construction: MedAustron, Vienna
 - one center not active: Rhön Klinikum/Siemens, Marburg
 - one center cancelled: NRoCK, Kiel
 - one center in preparation: Etoile, Lyon
 - one research facility in preparation: ARCHADE, Caen
 - only superconducting cyclotron based facility

North America: no activity

sb/ECPM1205/52

future development hadron therapy

• Holy Grail: one small and cheap accelerator per room

PARTREC PARTICLE THERAPY RESEARCH CENTER

- 250 MeV superconducting synchrocyclotron
 - pulsed beam ~1 kHz repetition rate
 - no degrader + energy selection system
 - no pencil beam scanning

- 230 MeV superconducting synchrocyclotron
 - pulsed beam ~1 kHz repetition rate
 - no fast scanning for moving targets

PARTREC | PARTICLE THERAPY RESEARCH CENTER

- 250 MeV superconducting synchrocyclotron
 - pulsed beam ~1 kHz repetition rate
 - no fast scanning for moving targets

- keyword: superconductivity
- smaller yes
- cheaper yes
- better no
 - at best similar to current state-of-the-art
 - no upgrade dose delivery technique possible

Dielectric Wall Accelerator • 2.5 m pulsed linac for 250 MeV protons pulse to pulse variable energy many technological challenges nietal electrode, high voltage pulse along tyte still dielectric material technology development CPAC + LLNL

• principle of operation DWA

- smaller probably
- better not possible to predict oblem? better not possible to predict oblem? better solutions looking for a problem?

PARTREC PARTICLE THERAPY RESEARCH CENTER

development carbon: accelerator

- comparison Heidelberg synchrotron IBA C400 cyclotron
 - key factors
 - superconductivity
 - compact accelerator

development carbon: accelerator

- comparison Heidelberg synchrotron IBA C400 cyclotron
 - key factors
 - superconductivity
 - compact accelerator
 - cyclotron: fixed energy, continous beam
 - synchrotron: variable energy, pulsed beam (< 1 Hz)
- differences in treatment quality?
 - compare proton facilities with cyclotron and synchrotron
 ú no evidence
- $\dot{\upsilon}$ superconducting cyclotron clearly more cost effective: the way to go

development carbon: dose delivery

- need for gantry: what is loss in treatment quality
 - analysis by radiation oncologists and medical physicists
- superconducting magnets keyfactor to size reduction
- options
 - fast field variation (similar to current gantries)
 - challenge: quench behaviour
 - large momentum acceptance, achromatic gantry
 - slow field variation
 - challenge: patient safety (no energy selectivity)

development carbon: dose delivery

- HIT gantry vs. concept FFAG gantry Trbojevic (Brookhaven)
- $\dot{\upsilon}$ large potiential for scale reduction

development carbon

- key factor: superconductivity
- cheaper
- smaller
- better
- good perspective for large increar

PARTREC PARTICLE THERAPY RESEARCH CENTER

development carbon: long term

- Fixed Field Alternating Gradient synchrotron
 - rapid energy variation
 - high frequency pulsed beam
 - does not solve size and cost issues

150 MeV proton FFAG KEK

PARTREC PARTICLE THERAPY RESEARCH CENTER

development carbon: long term

- Fixed Field Alternating Gradient synchrotron
 - does not solve size and cost issues
- DWA and other high gradient techniques
 - maximum gradient ~100 MV/m $\acute{\mbox{t}} \ge 40$ m length
 - does not solve size and cost issues
- laser and plasma wakefield acceleration
 - for the moment dreams

conclusions

- high investment limiting factor market penetration
 - smaller and cheaper systems needed
 - no compromise on treatment quality
- several options under investigation
 - novel technologies still far from application
- most promising route to success
 - superconductivity
 - compact accelerator to cyclotron
 - compact gantry: FFAG-like ?
- at the age of 70 cyclotrons still have a long life ahead

past results are no guarantee for the future

but....

some progress has been made over the last 100 years

2012: scanned proton beams

1939: first neutron therapy

