

Transmission of high energy heavy ion beams in the AGOR cyclotron

κνı

Ayanangsha Sen Kernfysisch Versneller Instituut Groningen The Netherlands

ECPM 2012 ; PSI Villigen

Problem Statement Need maximum intensity of heavy ion beams ²⁰⁶Pb at 8.5 MeV/u Increased intensity \rightarrow reduced transmission extracted intensity 1.0 0.5 1.5

0.5 $40_{Ar}^{5+} 8 \text{ MeV/A}$ 0.0 0 1 2 3 4 Injected beam intensity [10¹² pps]

 Increase in beam intensity leads to a pressure rise
 increased loss of beam particles

Goal : Improve transmission in cyclotron

- Understand beamloss process in a cyclotron
- Mitigation methods

KVI

AGOR Pressure ~ 10⁻⁷ mbar No of turns ~ 300 Pathlength ~ 1.5 km Storage ring (SIS18, GSI) Pressure ~ 10⁻¹¹ mbar Pathlength ~216 m/turn

BeamLoss in Cyclotron

Restgas

off walls

Charge Changing Collision

BeamLoss in Cyclotron

Restgas

S KVI

Orbit Calculations.

Track the beam particles after charge changing collisions

- unit change in charge
- negligible change in \vec{p} for beam particle negligible effect on axial motion

Consider radial motion:

– Energy on impact
– Angles of incidence
– Point of impact

KVI

KVI

κνι

 129 Xe $^{26+}$, 18 MeV/amu

κνι

κνı

¹²⁹Xe²⁶⁺, Capture, 16.74 MeV/amu; extraction 18 MeV/amu

BeamLoss in Cyclotron

Restgas

off walls

Charge Changing

Collision

Desorption

beam particles hit walls - release material

Depends on

- Energy
- Angle of incidence
- -Z (beam)
- Surface material

yields and their dependence on the surface preparation of stainless steel", EPAC 2002,

S KVI

Beams and Targets

Aluminum
 Copper
 Stainless Steel
 Gold plated Copper ^[1]
 [1]C. Omet, H. Kollmus, H. Reich-Sprenger, P.Spiller, Proc. EPAC08(2008)]

⁴⁰Ar⁵⁺ beam on Cu

Observation

 Desorption different for different rest gas species

 Pressure rise inversely proportional to angle

 Data not described by current models (Thermal Spike, Shockwave.)

Desorption Model

Thermal spike model

- •Yield depends on the temperature distribution on surface T(r,t)
- •*T*(*r*,*t*) is a gaussian in the central cylindrical core

•Contribution from the bragg peak is not considered

$$Y \propto \left(\frac{dE}{dx}\right)^2 \quad [2]$$

[2] R. Johnson, Int. Jour. of Mass Spectrometry and Ion Processes, 78(1987), 357 – 392.

- Extension of thermal spike model
- Contribution from Bragg peak

BeamLoss in Cyclotron

Restgas

(P)

KVI

Outlook

Extension of thermal spike model for grazing incidence

KVI

Mitigation methods

Scrapers (not practical)
Surface treatment {with beam}
Coating to seal bulk effects (already done)

Dependence on (dE/dx)ⁿ

KVI

All beams on targets, 2 degree, 200 nA mass 28 (CO)

Stability of off-centered orbits

Phase diagram taken at azimuth 270° for closed orbit at radius 0.70m

