OPAL Simulation for PSI Medical Cyclotron COMET

A. Adelmann, C. L. Van Herwaarden, J. M. Schippers, J. A. Veenendaal, J. Yang, H. Zhang

Paul Scherrer Institute, CH-5232 Villigen

Motivation

- OPAL is a simulation tool developed at PSI
- COMET is a real machine operating at PSI
- Need to improve the simulation for COMET
- For OPAL, new features need to be implemented in order to simulate COMET
- A win-win cooperation

Focus of Talk

- New features in OPAL

Applying multiple field maps
Introducing more general collimators

- Simulation for the central region of COMET

Chimney and puller
Fixed phase slit

Object Oriented Parallel Accelerator Library

OPAL is a tool for charged particle optics in accelerators and beam lines

- Including 3D space charge
- Exemplifying the importance of high performance computing
- Written in C++ and easy to be extended
- Using MAD language
- Running on largest clusters as well as on laptop

OPAL flavours

- OPAL-T
- OPAL-MAP
- OPAL-CYCL particle tracking in cyclotrons such as PSI Inj-II, PSI Ring, etc. 3D space charge including neighbouring turns time as independent variable
acceleration through simple straight gap collimator physics in low energy region not tested

PSI Medical Cyclotron COMET

Central Region

- Ion Source Chimney: 0 V
Opening: $0.5 \times 5 \mathrm{~mm}^{2}$
- Artificial anode: $\mathbf{+ 5 0} \mathrm{kV}$ Helps to produce right shape of zero potential surface
- Puller

Peak voltage: ca 80 kV Frequency: 72.8 MHz

- Fixed phase slits Opening: 0.2 mm Thickness: 1 mm
- Vertical deflector on D3
- Vertical collimator on D1

Magnetic Field Maps

Left: Magnetic field in median plane from TOSCA simulation Right: Magnetic field from measurement mirrored about x-axis Tracking only in anticlockwise direction

Magnetic Field

Left: Azimuthal variation of B field at $r=2.54,254,508,762 \mathrm{~mm}$ Right: Radial variation of average B field

RF Field Map

- ANSYS simulation from Lukas Stingelin
- Grid size $5 \times 5 \times 5$, field region (-855-855-5) to (855 855 5), all in mm

Electric Field in Central Region

- Electrostatic simulation, modulated with RF frequency
- Grid size $1 \times 1 \times 2.5$, field region (-70-70-10) to (70 70 10), all in mm

Electric Field near Chimney and Puller

Chimney: grid size $0.05 \times 0.05 \times 0.05$, region ($2.5-8.7-3$) to ($3.6-7.73$), in mm Puller: grid size $0.1 \times 0.1 \times 0.1$, region ($3.6-13-5$) to ($12-35$), in mm

New Features in OPAL for COMET

- Dee in spiral is far different from simple straight gap Applying 3D field map
- Detailed field maps necessary in central region Implementing multiple field maps
- Phase slit in central region crucial for beam product Implementing low energy collimation
- Other features in vision

Vertical deflector
Collimators with different shapes other than rectangular Trim rods

Single Particle Tracking

PaUl scherrer institut
(1) Get $\mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
(2) Pick a field map
(3) Get $\mathrm{E}_{0}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
(4) Calculate E

$$
E=E_{0} \cos \left(\omega t+\varphi_{0}\right)
$$

(5) Calculate $\mathrm{B}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
(6) Calculate Lorentz force
(7) Calculate next $\mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z})$

Independent variable t
One field map at one position φ_{0} same for all maps

Where are the Beam Losses?

Only sensitive to losses at extractor

Where are the Beam Losses?

Initial RF Phase

Fixed phase slit
Opening: 0.2 mm
Thickness: 1 mm
Plotted as black lines
Initial conditions
Position: centre of opening
Energy: 1 eV
Radial momentum: 0

- Optimal phase $\varphi_{0}=309^{\circ}$
- Phase deviation $\Delta \varphi=1.5^{\circ}$
- φ_{0} and $\Delta \varphi$ dependent on puller voltage

Initial Energy

Initial position: center of chimney opening Initial RF phase: 309°
Radial momentum: 0

Initial energy:

$$
\begin{aligned}
& E_{0}=1 \mathrm{eV} \\
& E_{0}=0.001 \mathrm{eV} \\
& E_{0}=30 \mathrm{eV}
\end{aligned}
$$

A wide range of low energy protons may pass through phase slit for a given RF phase

Initial Radial Momentum

Initial position: center of chimney opening
Initial RF phase: 309°
Initial energy: 1 eV
$p_{0}: 4.6169 \times 10^{-5} \mathrm{~m}_{\mathrm{p}} \mathrm{c}$
Initial radial momentum:

$$
\begin{aligned}
& p_{r}=0 \\
& p_{r} / p_{0}=0 \\
& p_{\mathrm{r}}=-4.6 \times 10^{-5} \mathrm{~m}_{\mathrm{p}} \mathrm{c} \\
& \mathrm{p}_{\mathrm{r}} / \mathrm{p}_{0}=-0.996 \\
& \mathrm{p}_{\mathrm{r}}=+4.6 \times 10^{-5} \mathrm{~m}_{\mathrm{p}} \mathrm{c} \\
& \mathrm{p}_{\mathrm{r}} / \mathrm{p}_{0}=+\mathbf{0 . 9 9 6}
\end{aligned}
$$

Initial radial momentum spread not critical at all

Initial Position: Horizontal

Initial energy: 1 eV Radial momentum: 0

Initial horizontal position: Centre of chimney opening Left side of chimney opening Right side of chimney opening

Left side more critical

Initial Position: Vertical

Initial RF phase: 309° Initial energy: 1 eV
Radial momentum: 0

Initial vertical position:
$z_{0}=0$
$z_{0}=0.5 \mathrm{~mm}$
$z_{0}=1.0 \mathrm{~mm}$
$z_{0}=1.5 \mathrm{~mm}$
$z_{0}=2.0 \mathrm{~mm}$
$z_{0}=-2.0 \mathrm{~mm}$

Initial vertical position less critical as horizontal one

Summary for Single Particle Tracking

$>$ OPAL simulation for COMET applying multiple field maps Simulation fits well with experimental beam loss pattern
> Single particle tracking
Puller voltage crucial for optimal RF phase and phase acceptance Particles from left side of chimney opening critical

Collimation in Low Energy Region

Proton Stopping Power in Cu Target

- The well-known BetheBloch equation is inapplicable in low energy region
- An empirical equation has to be applied to calculate the stopping power in low energy region
- For proton in Cu collimator low energy means E < 1 MeV
- Beam energy at fixed phase slit: ~0.2 MeV
- Right physics and right geometry lead to right collimation in COMET central region

Collimation by Phase Slit

the centre of chimney opening

$$
\begin{aligned}
& E=1 \mathrm{eV} \\
& \mathrm{P}_{\mathrm{r}}=0 \\
& \varphi_{0}=309^{\circ}
\end{aligned}
$$

1000 particles in Gaussian distribution started near chimney opening

$$
\begin{aligned}
& \sigma_{\mathrm{x}}=0.08 \mathrm{~mm}, \sigma_{\mathrm{px}}=0.5 \mathrm{eV} / \mathrm{c} \\
& \sigma_{\mathrm{y}}=0.00 \mathrm{~mm}, \sigma_{p y}=0.5 \mathrm{eV} / \mathrm{c} \\
& \sigma_{\mathrm{z}}=0.80 \mathrm{~mm}, \sigma_{\mathrm{pz}}=0.5 \mathrm{eV} / \mathrm{c}
\end{aligned}
$$

651 particles passing through Transmission: 65\%

Collimation by Phase Slit

Reference particle started from the centre of chimney opening

$$
\begin{aligned}
& E=1 \mathrm{eV} \\
& \mathrm{p}_{\mathrm{r}}=0 \\
& \varphi_{0}=307^{\circ}
\end{aligned}
$$

1000 particles in Gaussian distribution started near chimney opening

$$
\begin{aligned}
& \sigma_{\mathrm{x}}=0.08 \mathrm{~mm}, \sigma_{\mathrm{px}}=0.5 \mathrm{eV} / \mathrm{c} \\
& \sigma_{\mathrm{y}}=0.00 \mathrm{~mm}, \sigma_{\mathrm{py}}=0.5 \mathrm{eV} / \mathrm{c} \\
& \sigma_{\mathrm{z}}=0.80 \mathrm{~mm}, \sigma_{\mathrm{pz}}=0.5 \mathrm{eV} / \mathrm{c}
\end{aligned}
$$

Transmission: 36\%

Collimation by Phase Slit

A maximal transmission at φ_{0} $\sim 309.5^{\circ}$

The transmission drops rather faster on higher RF phases

The acceptance of phase slit is around 10 degree of RF phase

Puller voltage crucial

Bunch Development

Summary and Outlook

> OPAL simulation for COMET applying multiple field maps
Simulation fits well with experimental beam loss pattern
> Single particle tracking
Puller voltage crucial for optimal RF phase and phase acceptance
Particles from left side of chimney opening more critical
> Multiple particle tracking
Beam collimation in low energy region
Phase acceptance of the fixed phase slit around 10°
Beam tail from left side of chimney opening
$>$ Introduce vertical deflector, vertical collimators, and phase slit in special form
$>$ Better specification of the initial beam
> Trim rods

- Extraction

Acknowledgement

All my coauthors, especially two students C. L. Van Herwaarden and J. A.
Veenendaal from Saxion Hogescholen, Enschede, Netherland
Christian Baumgarten for many helpful advices
Christina Wouters for sharing her experience with TRACK simulation
Lukas Stingelin for providing RF field map
Vjeran Vrankovic for performing TOSCA simulation
Peter Frey, Markus Kostezer, Peter Meyer and André Schmidt for their technical support

