OPAL Simulation for PSI Medical Cyclotron COMET

A. Adelmann, C. L. Van Herwaarden, J. M. Schippers, J. A. Veenendaal, J. Yang, H. Zhang

Paul Scherrer Institute, CH-5232 Villigen

Motivation

- OPAL is a simulation tool developed at PSI
- COMET is a real machine operating at PSI
- Need to improve the simulation for COMET
- For OPAL, new features need to be implemented in order to simulate COMET
- A win-win cooperation

Focus of Talk

- New features in OPAL
 - Applying multiple field maps Introducing more general collimators
- Simulation for the central region of COMET Chimney and puller Fixed phase slit

Object Oriented Parallel Accelerator Library

OPAL is a tool for charged particle optics in accelerators and beam lines

- Including 3D space charge
- Exemplifying the importance of high performance computing
- Written in C++ and easy to be extended
- Using MAD language
- Running on largest clusters as well as on laptop

OPAL flavours

- OPAL-T
- OPAL-MAP
- OPAL-CYCL

particle tracking in cyclotrons such as PSI Inj-II, PSI Ring, etc. 3D space charge including neighbouring turns time as independent variable

acceleration through simple straight gap collimator physics in low energy region not tested

PSI Medical Cyclotron COMET

- Beam energy: 250 MeV
- Beam current: 500 nA
- Superconducting coils
- Magnetic field: 2.4 3 T
- Dee in spiral form
- RF frequency: 72.8 MHz
- Harmonic number: 2

Central Region

- Ion Source Chimney: 0 V Opening: 0.5×5 mm²
- Artificial anode: +50 kV Helps to produce right shape of zero potential surface
- Puller Peak voltage: ca 80 kV Frequency: 72.8 MHz
- Fixed phase slits Opening: 0.2 mm Thickness: 1 mm
- Vertical deflector on D3
- Vertical collimator on D1

Magnetic Field Maps

Left: Magnetic field in median plane from TOSCA simulation Right: Magnetic field from measurement mirrored about x-axis Tracking only in anticlockwise direction

PAUL SCHERRER INSTITUT

Magnetic Field

Left: Azimuthal variation of B field at r = 2.54, 254, 508, 762 mm Right: Radial variation of average B field

RF Field Map

ANSYS simulation from Lukas Stingelin

• Grid size 5×5×5, field region (-855 -855 -5) to (855 855 5), all in mm

PAUL SCHERRER INSTITUT

Electric Field in Central Region

- Electrostatic simulation, modulated with RF frequency
- Grid size 1×1×2.5, field region (-70 -70 -10) to (70 70 10), all in mm

PAUL SCHERRER INSTITUT

Electric Field near Chimney and Puller

Chimney: grid size 0.05×0.05×0.05, region (2.5 -8.7 -3) to (3.6 -7.7 3), in mm Puller: grid size 0.1×0.1×0.1, region (3.6 -13 -5) to (12 -3 5), in mm

PAUL SCHERRER INSTITUT

New Features in OPAL for COMET

- Dee in spiral is far different from simple straight gap Applying 3D field map
- Detailed field maps necessary in central region
 Implementing multiple field maps
- Phase slit in central region crucial for beam product
 Implementing low energy collimation
- Other features in vision
 Vertical deflector
 Collimators with different shapes other than rectangular
 Trim rods

Single Particle Tracking

- (1) Get R(x, y, z)
- (2) Pick a field map

(3) Get
$$E_0(x, y, z)$$

 $\mathsf{E} = \mathsf{E}_0 \cos(\omega t + \varphi_0)$

- (5) Calculate B(x, y, z)
- (6) Calculate Lorentz force
- (7) Calculate next R(x, y, z)

Independent variable t One field map at one position ϕ_0 same for all maps

PAUL SCHERRER INSTITU

Where are the Beam Losses?

Only sensitive to losses at extractor

Where are the Beam Losses?

PAUL SCHERRER INSTITUT

Initial RF Phase

PAUL SCHERRER INSTITU

16

Initial Energy

PAUL SCHERRER INSTITU

Initial Radial Momentum

PAUL SCHERRER INSTITU

Initial Position: Horizontal

Initial RF phase: 309° Initial energy: 1 eV Radial momentum: 0

Initial horizontal position: Centre of chimney opening Left side of chimney opening Right side of chimney opening

Left side more critical

PAUL SCHERRER INSTITUT

Initial Position: Vertical

ECPM 2012 Villigen, 11.05.2012

20

Summary for Single Particle Tracking

- OPAL simulation for COMET applying multiple field maps
 Simulation fits well with experimental beam loss pattern
- Single particle tracking
 - Puller voltage crucial for optimal RF phase and phase acceptance Particles from left side of chimney opening critical

Collimation in Low Energy Region

PAUL SCHERRER INSTITUT

Collimation by Phase Slit

PAUL SCHERRER INSTITU

Collimation by Phase Slit

PAUL SCHERRER INSTITU

Collimation by Phase Slit

A maximal transmission at ϕ_0 ~309.5°

The transmission drops rather faster on higher RF phases

The acceptance of phase slit is around 10 degree of RF phase

Puller voltage crucial

Bunch Development

Summary and Outlook

- OPAL simulation for COMET applying multiple field maps
 Simulation fits well with experimental beam loss pattern
- Single particle tracking
 Puller voltage crucial for optimal RF phase and phase acceptance
 Particles from left side of chimney opening more critical
- Multiple particle tracking
 Beam collimation in low energy region
 Phase acceptance of the fixed phase slit around 10°
 Beam tail from left side of chimney opening
- Introduce vertical deflector, vertical collimators, and phase slit in special form
- Better specification of the initial beam
- > Trim rods
- Extraction

PAUL SCHERRER INSTITUT

Acknowledgement

All my coauthors, especially two students C. L. Van Herwaarden and J. A. Veenendaal from Saxion Hogescholen, Enschede, Netherland
Christian Baumgarten for many helpful advices
Christina Wouters for sharing her experience with TRACK simulation
Lukas Stingelin for providing RF field map
Vjeran Vrankovic for performing TOSCA simulation
Peter Frey, Markus Kostezer, Peter Meyer and André Schmidt for their technical support

