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Space Charge “Dominated” Acceleration

Consider an isochronous cyclotron with space charge.
“Naive” expectations:

No longitudinal focussing (isochronism).

Longitudinal space charge (SC) increases phase width.

Phase width exceeds acceptance.

Energy gain depends on phase ⇒ increase energy width
(i.e. momentum spread).

Large momentum spread ⇒ large beam width ⇒ high
losses.

Countermeasures:

1 Flattop cavity to increase phase acceptance.

2 Increase cavity voltage: less turns ⇒ lower losses (Joho’s
N3-law1).

1
W. Joho, High Intensity Problems in Cyclotrons, Proc. 5th intl. Conf. on Cycl. Appl., Caen 1981.
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PSI Injector II

Counterfacts:

PSI Injector II with 2.4 mA without flattop and low losses.

Explanation: Space charge “dominated” acceleration.

Two bunchers in front of cyclotron (increase SC forces).

Injector two has high νr and νz (increase SC forces).

Works better the higher the beam current.

Extremely contra-intuitive. And it works.

But: What is it and how does it work?
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A tiny bit of theory.

⇒ Develope simple model:

Transverse - longitudinal only (⇒ sectors can be omitted.)

⇒ Use rotational symmetrie: ~B = ~ez B0 γ.

⇒ The (matched) beam sizes are constant.

⇒ Space charge forces are constant.

⇒ Linear approximation for SC forces.

⇒ EQOM should have a simple solution.

Use TRANSPORT like description in local coordinates:
(horiz./vert./long./)=(x,y,z).

First assume coasting beam, no acceleration.
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First-Order Differential Equation

Single particle dynamics:

Radial coordinate x = r(θ) − r0 and x ′.

Longitudinal position z = r0 (θ − θ0).

Momentum deviation δ = ∆p
p0

.

Put in state vector ψ = (x , x ′, z , δ)T in local co-moving
coordinates.

Define h = 1/r0 as curvature of orbit.
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First-Order Differential Equation

The linearized EQOM including space charge are:

ψ̇ = Fψ ,

with solution (for “average”2 force matrix F = 1
L

log (M)):

ψ(s) = exp (F s)ψ(0) ,

explicitely:

d

ds
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δ
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,

Focusing terms and defocusing terms (SC) are colored.
Dispersive coupling h = 1/r0. Drift terms in black.

2
R. Talman: Geometric Mechanics; 2nd Ed., Wiley-VCH Weinheim, Germany, 2007.
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Space Charge Forces

Kx and Kz represent horizontal and longitudinal space charge
forces3:

Kx = K3 (1−f )
(σx+σy ) σx σz

K3 = 3 q I λ

20
√

5 π ε0 m c3 β2 γ3

Kz = K3 f
σx σy σz

f ≈
√

σx σy

3 γ σz

Ky = K3 (1−f )
(σx+σy ) σy σz

Note that always
Kx > 0
Kz > 0

and typically
Kx ≈ Kz ≪ kx .

3
Frank Hinterberger, Physik der Teilchenbeschleuniger, 2. Auflage, Springer, Heidelberg 2008.
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Stability ≡ focusing.

Focusing of the single-particle motion is given for a matrix F

with imaginary eigenvalues.
Computing the eigenvalues (± i Ω+ and ± i Ω−):

a ≡ kx−Kx−Kz

2
b ≡ Kz (Kx + h2 γ2 − kx)

Ω+ =
√

a +
√

a2 − b

Ω− =
√

a −
√

a2 − b .

If b is negative ⇒ a <
√

a2 − b, ⇒ Ω− imaginary, ⇒ solution
is unstable (divergent).
⇒ a and b must be positive to give real–valued frequencies.
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Parasitic Focusing

With b ≪ a, Kx ≪ kx and Kz ≪ kx and assumption of perfect
isochronism: kx = h2 γ2 = h2 ν2

r , we approximate a ≈ kx

2 and
b ≈ Kx Kz :

Ω+ =
√

a +
√

a2 − b ≈ h νr

(

1 − Kx Kz

k2
x

− . . .
)

Ω− =
√

a −
√

a2 − b ≈
√

Kx Kz

2

(

1 + Kx Kz

2 k2
x

+ . . .
)

.

⇒ Ω+ is horizontal focusing, reduced by space charge.
⇒ Ω− is effective longitudinal focusing, induced by space
charge and coupling.
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Focusing Condition

Focusing requires

b = Kz (Kx + h2 γ2 − kx) > 0
⇒ Kx + h2 γ2 − kx > 0

The focusing force kx can be calculated by:

kx = h2 (1 + n) = h2

(

1 +
r

B

dB

dr

)

The isochronous field plus a small but important field error ε
can be written as

B(r) = B0 γ (1 + ε) = B0
1 + ε

√

1 − (r/a)2
,

This gives

kx = h2 γ2 +
1

r

dε

dr
.

Focusing condition:

Kx − 1
r

dε
dr
> 0
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Focusing Condition II

ω0 = Nh ωrf is nominal orbital frequency,
Nh is the harmonic number, ω real orbital frequency and φ is
phase.
Then:

ε ≈ 1 −
ω0

ω
= −

1

2πNh

dφ

dE

dE

dn
.

With dE
dn

= V cosφ this gives:

dε
dr

= dε
dE

dE
dr

≈ − V
2 π Nh

dE
dr

(

d2φ
dE2 cosφ−

(

dφ
dE

)2
sinφ

)

.
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Focusing Condition III

If φ ≈ 0 then:
1
r

dε
dr

≈ −C0 × d2φ
dE2

where

C0 =
E0 γ

3

2πNh a2

dE

dn

Focusing condition:

Kx + C0
d2φ

dE 2
> 0 .

⇒ Longitudinal focusing depends on phase curve!
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Influence of RF: Bunching/Debunching Phase

Take RF-effects into account:

d

ds









x

x ′

z

δ









=









. 1 . .
−kx+Kx . . h

−h . . 1
γ2

. . Kz γ
2 + Krf .

















x

x ′

z

δ









,

Focusing terms and defocusing terms (SC) are colored.
Dispersive coupling h = 1/r0. Drift terms in black.

Krf > 0: “Debunching” phase.

Krf < 0: “Bunching” phase.

Krf =
q V0 sin (φ)

p v

h2 Nh

2π
.
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OPAL in a Nutshell

OPAL 4: Object oriented Parallel Accelerator Library
developed at PSI (amas.web.psi.ch).

Flavor OPAL -cycl dedicated for the simulation of high
intensity cyclotrons.

Space charge solver: Particle in cell (PIC)-method to
compute space charge potential.

FFT-method for solving electrostatic forces.

Parallel computing allows to track 105 or more particles
simultaniously in the cyclotron.

OPAL uses MAD language with extensions.

Other flavors for beam transport lines / Linacs available.

4
J. J. Yang, A. Adelmann, M. Humbel, M. Seidel, and T. J. Zhang, Phys. Rev. ST Accel. Beams 13,

064201 (2010).
Y. J. Bi, A. Adelmann, R. Dölling, M. Humbel, W. Joho, M. Seidel, and T. J. Zhang, Phys. Rev. ST Accel.
Beams 14, 054402 (2011).
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Compare to OPAL-results

1 Create “ideal” ring machine: Geometry similar to ring
machine.

2 Adjust perfect or distorted isochronism (see figure).
3 Compute matched beam distribution 5.
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C. Baumgarten; Phys. Rev. ST Accel. Beams 14, 114201 (2011) and 114002 (2011).

C. Baumgarten; arXiv:1201.0907 (2012), submitted to Phys. Rev. ST Accel. Beams. 16 / 25
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Matched Beam in Ideal Cyclotron I
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Matched Beam in Ideal Cyclotron II
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Matched Beam in Ideal Cyclotron III
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Conditions at PSI Cyclotrons

PSI Injector II PSI Ring Cyclotron

Energy 0.86..72 MeV 72..590 MeV
Phase Curve flat excursion before extraction
ε at Injection6 1.3µm rad 2.5µm rad

ε at Extraction 2.5µm rad 7.5µm rad

Flattop no yes
νr 1.2 . . . 1.35 1.1 . . . 1.8
νz 1.35 . . . 1.7 0.7 . . . 0.9

Buncher 1st and 3rd harm. 10th harmonic
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6Here: horizontal emittance. Measured by D. Reggiani.
20 / 25



SC Cyclotrons

C.Baumgarten

Outline / Intro

Simplified
Theory

Phase Curve

Influence of
RF

OPAL
Simulation

The PSI
Cyclotrons

Summary

Matched Beam in PSI Ring Machine
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Effect of Longitudinal Defocusing

What, if the cyclotron is not well-prepared?

1 If the longitudinal focusing frequency is imaginary, the
beam expands longitudinally.

2 The horizontal-longitudinal coupling increases also
horizontal beam size.

3 The beam expansion reduces space charge forces.

4 The reduced space charge forces reduce focusing.

5 ⇒ filamentation ⇒ irreversible increase of emittance.

6 ⇒ increased extraction losses.
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Conclusions

First conclusion: “Simple” linear matching model works - even
in case of space charge. But: Iteration required for accurate
solution7.
If high power cyclotrons (“dream machines”) are supposed to
take advantage of longitudinal focusing by space charge, ...

...the injected beam should be matched.

...the phase curve should be flat over all turns.

...a high beam brightness is required (PSI-Ring:
ε ≤ 1.5µm rad at 2.2 mA).

...the focusing frequency νz should be as high as possible.

...the cyclotron optics should be simulated before the
finalization of design.

7
C. Baumgarten; Phys. Rev. ST Accel. Beams 14, 114201 (2011).
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Conclusions

In order to achieve space charge dominated beam transport in
the PSI Ring machine...

...the emittance of the injected beam must be small
enough.

...the matching into INJECTOR II should be optimized.

...superbuncher has to be commissioned/optimized.

...the injected beam must be matched.

...the phase curve must be corrected (new Trim
Coils/Shimming).

Thank you.
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