ECPM 2012 Paul Scherrer Institut

Switzerland

May 9-12, 201

VARIAN medical systems

Commissioning and Testing of Varian's 250 MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

> <u>H. Röcken</u>, M. Abdel-Bary, E. Akcöltekin, P. Budz, P. vom Stein, T. Stephani, J. Wittschen

VARIAN Medical Systems Particle Therapy GmbH

Friedrich-Ebert-Str. 1 D-51429 BERGISCH GLADBACH GERMANY

OUTLINE

- ProBeam[™] Machine Key Data
- What have we told you so far?
 - ECPM 2009
 - CYCLOTRONS 2010
- Current Status of Varian's ProBeam[™] Systems
- Factory Comm. & Testing of Cyclotron #3
 - RF Commissioning Results
 - Digital LLRF Control System
- First Internal / External Beam, Extraction Efficiency
- Transport to the USA, First Beam On Site
- Production of Further ProBeam[™] Systems
 - Status of ProBeam[™] Cyclotrons #4 & #5
- Conclusion

CPM 2012 VARIAN ProBeam[™] SC Cyclotron Key Data^{Paul Schever Institut} (Engineering Goals) May 9-12, 2012

≻ Beam	- Energy and particles	250 MeV protons
	- Extracted current (max)	800 nA
	- Emittance of extracted beam	< 3 / 5 π mm mrad (2 σ)
	- Momentum spread ∆p/p	±0.04% (i.e. 200keV @ 250MeV)
	- Number of turns	650
	- Extraction efficiency (multi-turn extraction mode)	~80%
	- Dynamic range for intensity modulation	1:800
	- Fast intensity modulation	via electrostatic deflector, >10% in 100 μs
≻ Iron Yoke	- Outer diameter	3.1 m
	- Height	1.6 m
	- Weight	<90 t
➢ SC Magnet	- Stored energy	2.5 MJ
	- Central field	2.4 T
	- Max. field at the coil	<4 T
	- Operating current	160 A
	- Rated power of cryocoolers	40 kW
≻RF System	- Frequency	72.8 MHz (2 nd harmonic)
	- Voltage source to puller / @ extraction radius	80 kV / 105 kV
	- RF power	≤115 kW

4 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

A partner for life

What have we told you so far? ECPM 2009:

 Patient treatment started at RPTC Munich, all scanning proton therapy treatment equipment provided by Varian

5 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam™ Cyclotrons for Proton Therapy

What have we told you so far? ECPM 2009:

- Patient treatment started at RPTC Munich, all scanning proton therapy treatment equipment provided by Varian
- Uptime = 97% for first 138 clinical days

eam Energy	90 - 230 MeV	70 – 250 MeV
reatment Field Size	25 cm x 25 cm	30 cm x 40 cm
Dose Rate	ca. 1.1 Gy / litre / min.	2 Gy / litre / min.
Beam Width (1 sigma)	4 mm	3 mm or 4 mm
Spot Dose Stability	better 3 %	better 1 %
Spot Position Stability	better 1 mm	better 1 mm
360° Gantry	1 out of 4	No 2: October 2009
		No 3: February 2010
		No 4: June 2010
Fixed Beam Small Field Scottering		October 2010
Proton System Reliability	Treatment 134 of first 138 da 97 %	ayo >97 %
We started patient treatment in a scanning therapy facility well within	97 % harden 2009 and expect to operate a 2010. hily patient treatment in Gantry 1 with	97 %

6 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam™ Cyclotrons for Proton Therapy

treatment equipment provided by Varian

Patient treatment started at RPTC

Munich, all scanning proton therapy

- Uptime = 97% for first 138 clinical days
- Development of Solid State RF Amplifier started (Power Transistor Modules)

7 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam™ Cyclotrons for Proton Therapy

What have we told you so far? ECPM 2009:

treatment equipment provided by Varian

Patient treatment started at RPTC

Munich, all scanning proton therapy

- Uptime = 97% for first 138 clinical days
- Development of Solid State RF Amplifier started (Power Transistor Modules)
- ProBeam[™] Cyclotron #3 was being assembled

A partner for life

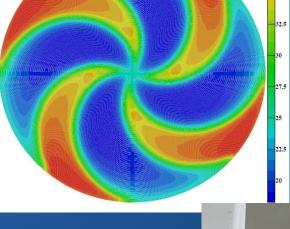
What have we told you so far? ECPM 2009:

What have we told you so far? CYCLOTRONS 2010:

A partner for life

- RPTC Munich: 3 gantries were in clinical operation, the last one was about to be handed over
- ProBeamTM Cyclotron #3 was completely assembled and under commissioning

9 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam™ Cyclotrons for Proton Therapy



operation, the last one was about to be handed over ProBeam[™] Cyclotron #3 was completely assembled and under commissioning

 Field mapping and quench test had passed and demonstrated a stable, quench proof and quench tolerant system

What have we told you so far? CYCLOTRONS 2010: RPTC Munich: 3 gantries were in clinical

10 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

handed over ProBeam[™] Cyclotron #3 was completely assembled and under commissioning ______

RPTC Munich: 3 gantries were in clinical

operation, the last one was about to be

- Field mapping and quench test had passed and demonstrated a stable, quench proof and quench tolerant system
- Solid state RF amplifier test stand with 20 transistor modules had passed >1000h test

A partner for life

What have we told you so far? CYCLOTRONS 2010:

12 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam™ Cyclotrons for Proton Therapy

What have we told you so far? CYCLOTRONS 2010:

- RPTC Munich: 3 gantries were in clinical operation, the last one was about to be handed over
- ProBeam[™] Cyclotron #3 was completely assembled and under commissioning
- Field mapping and quench test had passed and demonstrated a stable, quench proof and quench tolerant system
- Solid state RF amplifier test stand with 20 transistor modules had passed >1000h test
- New full power RF amplifier with 120 modules was assembled and ready to use

quench proof and quench tolerant system Solid state RF amplifier test stand with 20 transistor modules had passed

RPTC Munich: 3 gantries were in clinical

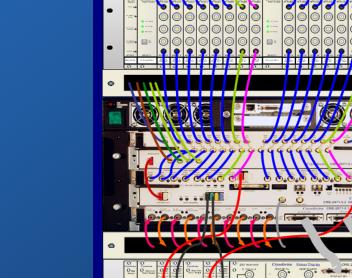
ProBeam[™] Cyclotron #3 was completely

assembled and under commissioning

Field mapping and quench test had

passed and demonstrated a stable,

operation, the last one was about to be


>1000h test

handed over

- New full power RF amplifier with 120 modules was assembled and ready to use
- Digital LLRF was ready to use

H. Röcken - Commissioning and Testing of Varian's 250MeV 13 Superconducting ProBeam[™] Cyclotrons for Proton Therapy

What have we told you so far? CYCLOTRONS 2010:

medical

A partner for life

0.

What have we told you so far? CYCLOTRONS 2010:

- RPTC Munich: 3 gantries were in clinical operation, the last one was about to be handed over
- ProBeamTM Cyclotron #3 was completely assembled and under commissioning
- Field mapping and quench test had passed and demonstrated a stable, quench proof and quench tolerant system
- Solid state RF amplifier test stand with 20 transistor modules had passed >1000h test
- New full power RF amplifier with 120 modules was assembled and ready to use
- Digital LLRF was ready to use
- Factory Test Cell was ready for operation

14 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam™ Cyclotrons for Proton Therapy

Current Status of Varian's ProBeam[™] Systems

- RPTC Munich: All 4 gantries are clinical
 - >1000 patients have been treated with a scanned proton pencil beam functionality is continuously being upgraded cyclotron is in continuous operation
- Cyclotron #3 RF conditioning is performed very efficiently using transistor amplifier and digital LLRF
- Cyclotron #3 was beam tested in the factory test cell
- Cyclotron and all other ProBeam[™] PT equipment is shipped and installed at Scripps PTC in San Diego / USA
- First beam in April!
- Cyclotron #4 is under assembly
 - coil is ready cryostat is ready and passed LN cold test complete machine will go into test cell in summer
- Cyclotron #5 coil is ready and electrically tested cryostat has to be completed

15 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

Factory Testing of Cyclotron #3

Cyclotron #3 was moved into factory test cell

16 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

Factory Testing of Cyclotron #3

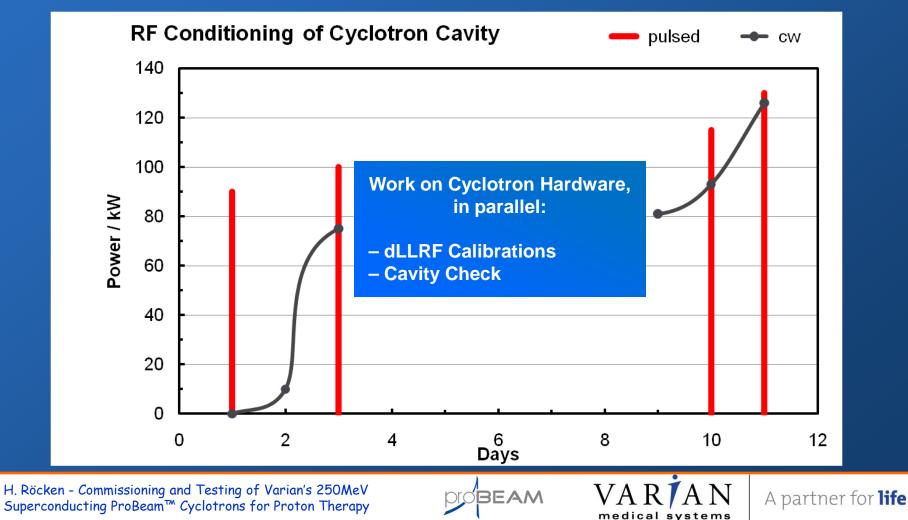
Cyclotron #3 was moved into factory test cell

17 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam™ Cyclotrons for Proton Therapy

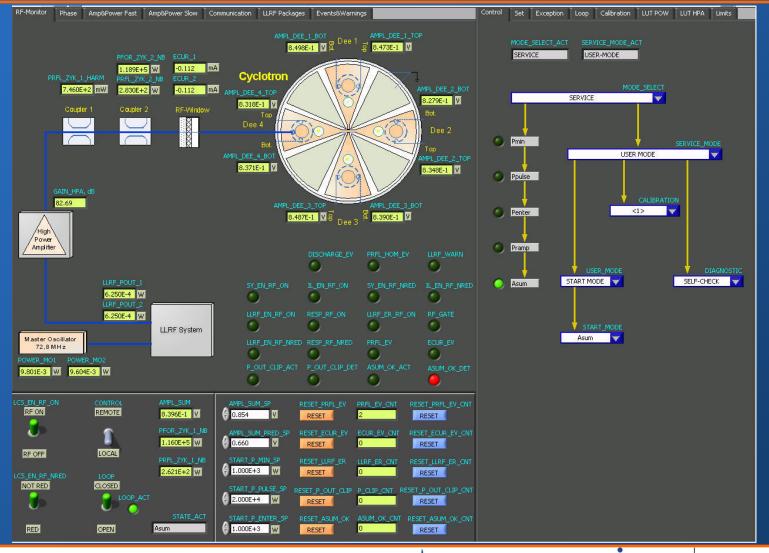
Factory Testing of Cyclotron #3

Cyclotron #3 was moved into factory test cell

18 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

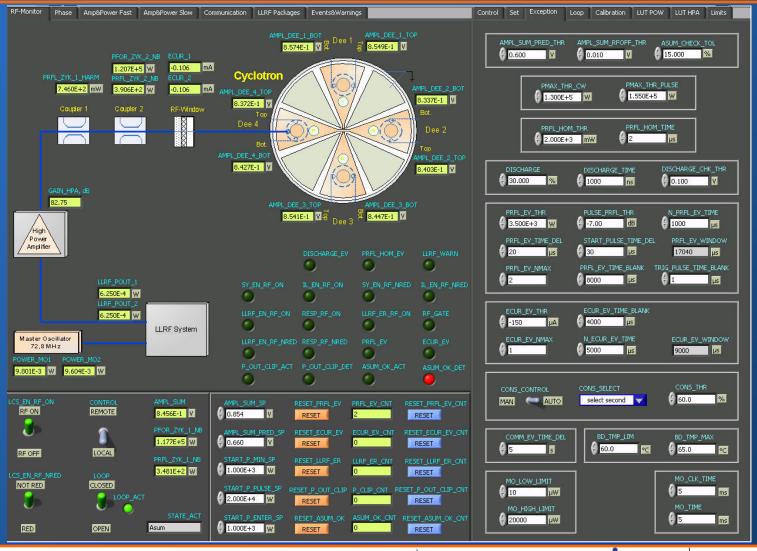


RF Commissioning Results

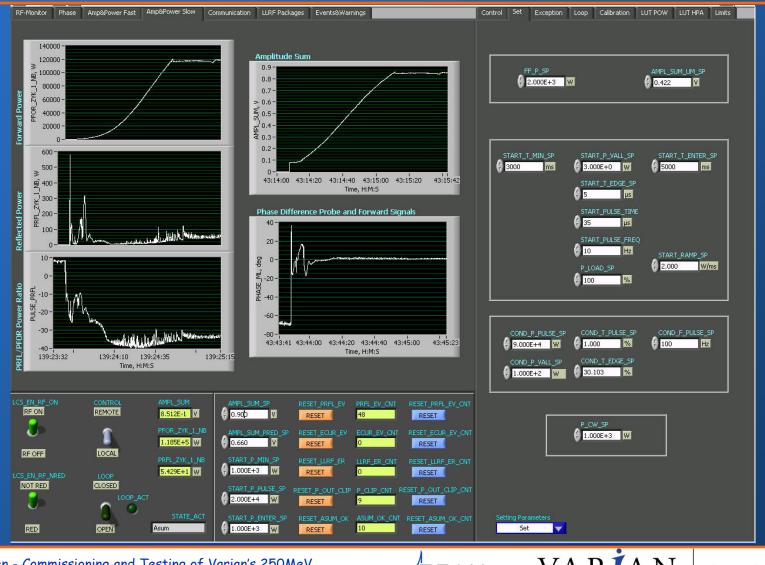

Solid State Amplifier & Digital LLRF

Very Fast RF Conditioning in Pulsed Mode (5% - 20% duty cycle)

Digital LLRF Control System

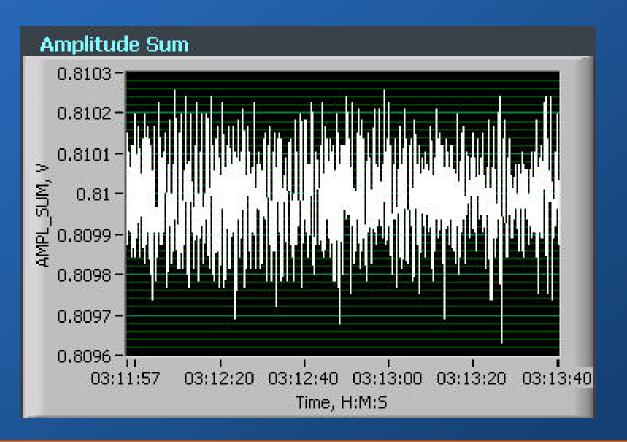

20 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

Digital LLRF Control System


21 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

VAR AN medical systems

Digital LLRF Control System

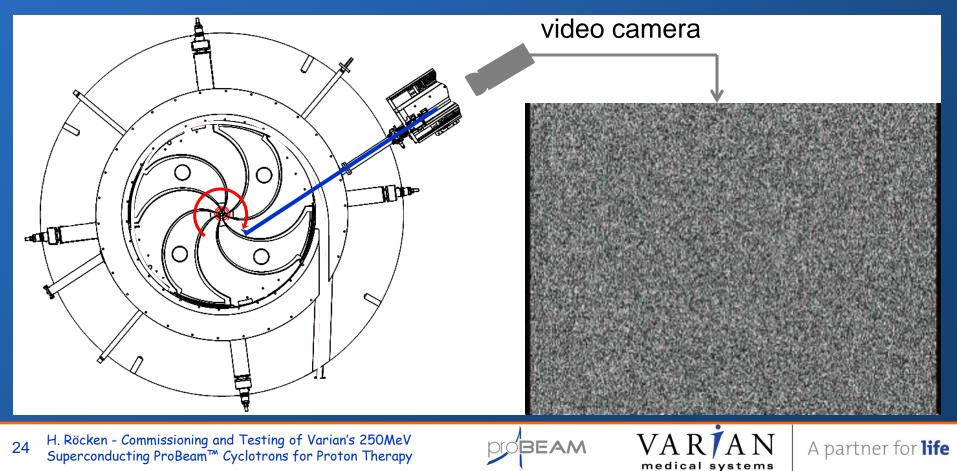

H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy pro**beam**

VAR AN medical systems

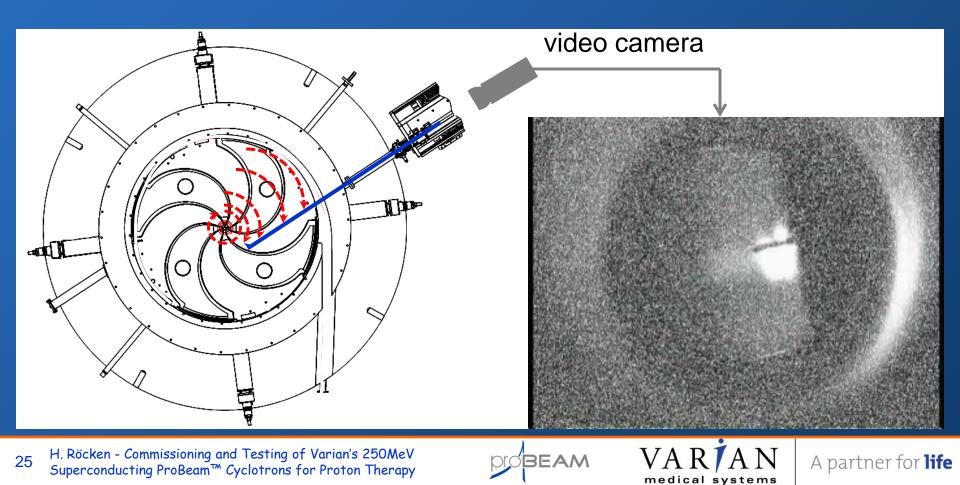
RF Amplitude Stability

 $\Delta V/V \approx 2 \times 10^{-4} (1\sigma)$ $\Delta V/V \approx 6 \times 10^{-4} (pp)$

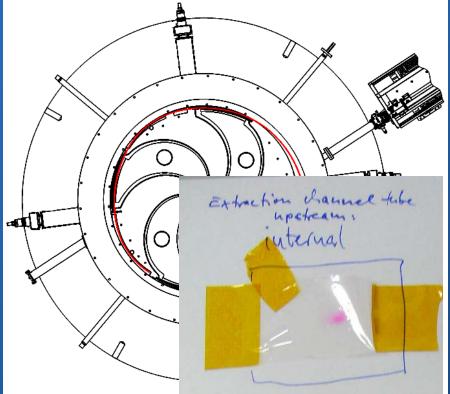
H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam™ Cyclotrons for Proton Therapy

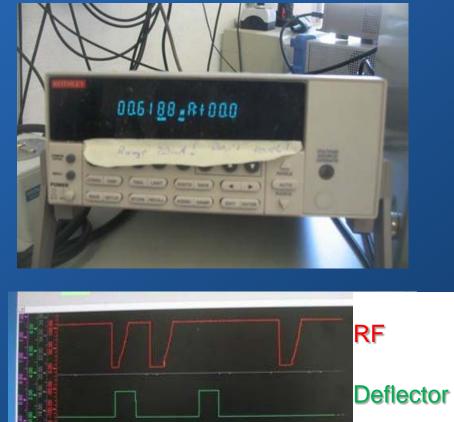


First Internal Beam, June 8, 2011


- System prepared (magnet & RF ramped up, viewer probe with video camera installed near cyclotron center)
- First switch-on of ion source

Beam Development, June 9, 2011


 Already on the next day it was possible to bring the beam close to extraction radius



First Extracted Beam, June 29, 2011

• 1st extracted beam:

26 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

A partner for life

Beam

Radial Beam Probe Scan 10 9 8 Beam Current / nA 7 6 5 4 3 2 1 0 500 600 700 800 400 900 Cyclotron Radius/mm

27 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy DIOBEAM

A partner for **life**

2012

(FFF)

ECP

Switzerland May 9-12, 201

Paul Scherrer Institu

Disassembly and packaging end of July

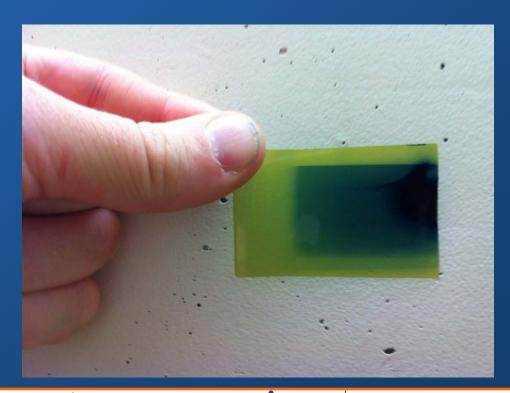
28 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam™ Cyclotrons for Proton Therapy

- Disassembly and packaging end of July
- Shipping August to September

- Disassembly and packaging end of July
- Shipping August to September
- Installation into building October

- Disassembly and packaging end of July
- Shipping August to September
- Installation into building October

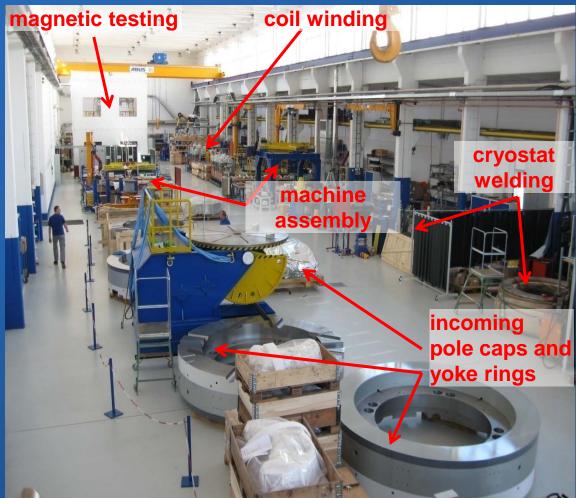
31 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy



First Beam On Site, 2012

- November to December 2011: Cabling, installation of beamline
- January 2012: Cyclotron powered and cooled down
- February: On site magnetic field verification after transport
- March: RF re-conditioning
- April 18: First beam on site!

Without any re-tuning, all parameters known from the factory testing.



Production of Further ProBeam[™] Systems ^{Paul Schever Institut} Switzerland May 9-12, 2012

Cyclotron Production Hall

33 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

A partner for life

ECPM 2012

Production of Further ProBeamTM Systems

Cyclotron Production Hall

ECPM 2012

34 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

Cyclotron Production Hall

35 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

A partner for life

ECPM 2012

FED

Production of Further ProBeamTM Systems

• Other production areas:

Beamline modules

36 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

A partner for life

Production of Further ProBeamTM Systems Switzerland

• Other production areas:

- Beamline modules
- Scanning nozzles

37 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam™ Cyclotrons for Proton Therapy

A partner for life

Production of Further ProBeamTM Systems Switzerland

• Other production areas:

- Beamline modules
- Scanning nozzles
- SW test center

38 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam™ Cyclotrons for Proton Therapy

A partner for **life**

Status of ProBeam[™] Cyclotrons #4 & #5

A partner for life

Cyclotron #4

- Pole caps and yoke rings are being equipped with components
- All media get connected
- Cryostat is completed and passed electrical and LN2 tests

Status of ProBeam[™] Cyclotrons #4 & #5

Cyclotron #5

- Coil is completed and passed electrical tests, cryostat welding will start soon
- Yoke rings and pole caps passed factory incoming inspection
- Assembly will continue in parallel to #4 testing

Conclusion

- ➤ The VARIAN ProBeam[™] Superconducting Compact Proton Cyclotrons feature superior properties that make them turn-key operational machines and predestine them for use in pencil beam scanning proton therapy.
- > 2 of such cyclotrons are already in clinical use.
- #3 is currently being commissioned at customer's site, first beam was extracted in April 2012.
- > Several more machines are in production.
- > All cyclotrons will be factory tested with beam.
- > VARIAN is continuously developing its technology further and introducing new features.
- Recent product enhancements include Transistor RF Power Amplifiers and Digital Low Level RF electronics.

- > cw proton beam
- > high energy
- > high current
- > stable beam position
- > small footprint
- > high extraction efficiency
- > low activation
- > fast and easy access for maintenance
- > high uptime
- > operator-free operation
- > low power consumption

THANK YOU!

42 H. Röcken - Commissioning and Testing of Varian's 250MeV Superconducting ProBeam[™] Cyclotrons for Proton Therapy

