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A bird’s eye view of the journey
[Sysang 1749]



There is no escape!

REVIEWS AND COMMENTARY • EDITORIAL

“We are the Borg. Lower your shields and surrender your 
ships. We will add your biological and technological distinc-
tiveness to our own. Your culture will adapt to service us. Re-
sistance is futile.” (1)

There is a certain inevitability to the deployment of 
machine learning and other advanced computational 

methods in medicine. Especially in radiology, among the 
medical specialties, there is keen interest in improving the 
performance of diagnostic imaging in terms that affect pa-
tient outcomes. Efforts are being applied across the spec-
trum of medical imaging, including a focus on improving 
radiologist performance. To this end, once revolutionary 
digital technologies are now ordinary and essential for clin-
ical practice. "ese include methods for image display (col-
or digital displays), image analysis (digital image enhance-
ments and other postprocessing), and real-time reference 
resources (world wide web) to aid in interpretation. "e 
merger of these technologies readily suggests itself, which 
is an indication of the inevitability of advanced computing 
applications such as machine learning.

Many proof-of-principle studies have demonstrated 
that machine learning algorithms outperform human ex-
perts under highly selective and constrained conditions, 
notably with certain radiology tasks. As these studies move 
beyond the specialist computer science disciplines, reports 
of applications are now common in journals directed to 
specific disciplines, such as radiology. Commentary regard-
ing these developments has been a mixture of informed 
narrative, as well as breathless hype, including the advice 
that radiology training programs can now be disbanded as 
there will no longer be need or demand for radiologists’ 
services (2). What is a radiologist to make of this, and how 
can we best inform ourselves of developments in this field? 
Careful and considerate analysis of important studies in 
this area will be informative.

In this issue of Radiology, the exemplary study by Ding 
et al (3) describes the development, training, and perfor-
mance of a machine learning method for the diagnosis of 
Alzheimer disease. "is is an important and clinically rel-
evant diagnostic task, and the study conditions have some 
relation, but are not identical, to what a radiologist may 
encounter in clinical practice. Consideration of the prob-
lem selection, method development, implementation, and 
application testing in this study provide a substantive guide 
to understanding the rapidly emerging technology of ma-
chine learning. Consequently, while this study may be of 
special interest to neuroradiologists and nuclear imaging 
specialists, it is also broadly relevant to essentially all fields 
of general and subspecialty radiology.

A chief strength of the study is careful selection of the 
clinical problem. "e best machine learning applications 
address “pain points”–problems that are not easily or well 
solved with existing resources, including a radiologist’s 
skill. Accordingly, clinical interpretation of fluorodeoxy-
glucose (FDG) brain PET examinations is sorely in need 
of improvement. Reader performance is variable from cen-
ter to center, and these scans are likely underused at least 
in part due to suboptimal clinical interpretation. Better 
quality interpretation is likely to result in improved patient 
outcomes. Another favorable factor in the selection of this 
problem is the relatively manageable scale of data involved. 
A typical brain PET has a voxel space of 128 3 128 3 75, 
and for the Ding et al study, scan data were reduced to a 
matrix of 100 3 100 3 90 voxels. Given this scale of data, 
the use of approximately 2000 scans in the training and 
test sets is reasonable. In contrast, a head CT may easily 
have a data matrix up to 512 3 512 3 256 voxels, and 
many thousands of scans would be required in the training 
and test sets due to the complexity of examination findings.

An advantage of the problem chosen by Ding and col-
leagues is that high-quality reference data are available for 
both control subjects and patients with Alzheimer disease. 
"e Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
is a repository of well-curated longitudinal imaging data 
correlated with extensive clinical information, including 
details of patient cognitive function and clinical diagno-
sis, as well as results of laboratory and genetic testing (4). 
ADNI is a shining example of foresighted science that 
should serve as a model to the biomedical community, es-
pecially as the development of machine learning applica-
tions become standardized. ADNI data are collected from 
multiple centers using standard protocols and is available 
to all qualified users. Imaging research in other domains 
will benefit from this model and the National Institutes 
of Health (5), among others, is advancing initiatives along 
similar lines.

Ding and colleagues provide detailed description of 
their machine learning application and description of the 
trial data that is adequate for other researchers to repli-
cate their analysis. "is comports with conventions that 
are standard in the physical and data sciences and that are 
increasingly encouraged in biomedical science (6). "ese 
details, and other readily available resources (7,8) can serve 
as a guide to those who would like to develop similar ap-
plications, or perhaps improve on the elaborated methods. 
Transparency in methods and data sharing is a vital prac-
tice in the physical and data sciences that has been crucial 
for the rapid development of advancing technology. As 
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ML is central for imaging biomarkers

[Haller et al. 2013]

…

[Biogen 2021]

Drug 
eligibility

Intervention 
eligibility

Adverse 
effects

Differential 
diagnosis

Drug 
response

[Maggi, Fartaria, et al. 2020] [Meier et al. 2020]

[Fartaria et al. 2019]
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Two main ML tasks in radiology
Image → Image prediction
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Image (+X) → Clinical prediction
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Embarking on the journey

[Burn-Jones 1861]



The map and the tools
PACSMAN

Horus explorer (RDW)

Find and retrieve data

 

  

 

   

 Store / share data
Karnak & Kheops

Annotate data
Mint


RepLab

RedCap

Develop & evaluate 
models

CHUV / UNIL HPC
Assess impact

radiology workflow

health economics 

models

Depersonalise data
Karnak



Finding images on the PACS at scale

dcm

P A C S M A N

dcm dcm

Batch image query 
and retrieval tool

With grateful acknowledgement of contributions from Frédéric Pedron (RAD), Firas Ben Othman (RAD),

Seb Tourbier (RAD), Roger Schaer (HES-SO), Alex Wetzel (DSI)

Here’s a list of 500 patients and exam 
dates, give me all their MR and SR 
images

PatientID StudyDate Modality

12345 20200117 MR

12345 20200117 SR

8888 20180915 MR

… … …

Known patient list

How many images with ProtocolName 
‘WIP748’ were acquired between 2018 
and 2020?

ProtocolName StudyDate Modality

*WIP748* 20180101-20201231 MR

Unknown patient list

I need to type them in one by 
one, come back in a week or 
two and bring a hard disk

Old way

Sorry, nobody will ever know



Finding other medical data

Neuropsy

clinical scores assays genetics EHRs
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dcm

P A C S M A N

dcm dcm

Horus explorer / Research data warehouse / custom RedCap (e.g. RegCOVID)



Depersonalising DICOM images
Tag (field) level

blank replace modify

names X

unique 
IDs

X

dates X

basic approach - rule-based

but….
PatientMotherBirthName (0x0010,0x1060)

undocumented private tags

pixel data can still hold personal information



Depersonalising DICOM images
Image level
Delete Mask Deface/reface

[dclunie.com] [Huelnhagen et al., ISMRM 2021]

http://dclunie.com


Depersonalising DICOM data
Towards standardization: SPHN DCC working Group de-ID efforts

Risk-based approach

[SPHN DCC de-ID WG]

Exhaustive tag ruleset

[SPHN DCC de-ID WG]



Storing and sharing DICOM data

dcm

P A C S M A N

dcm dcm

PACS

Collaboration with Frédéric Pedron (CHUV/RAD), Alexandre Wetzel (CHUV/DSI), Yves Jaggi (CHUV(DSI), Solange Zoergibel 
(CHUV/DSI), Roberto Fabbretti (UNIL/DCSR), Roger Schaer (HES-SO), Adrien Depeursinge (CHUV/NUC+HES-SO)

Karnak

query + retrieve

de-identify + route

airgap
Kheops

public
Kheops

kheopspub.unil.ch

kheops-rg.chuv.ch

example: 
multicentric 
COVID CXR

(Catherine 
Beigelman)

Empoli

LouvainCHUV

Siena



Complete DICOM depersonalisation workflow
The CHUV approach

Depersonalisation is great, 
but we need consistent IDs 
and timings across images 

and clinical data



DSI	/	Gouvenance

HORUS Image
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DSI	/	Gouvenance

HORUS Image
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DSI	/	Gouvenance

HORUS Image
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HORUS Image
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17/12/2020 19



DSI	/	Gouvenance

HORUS Image

17/12/2020 20



DSI	/	Gouvenance

HORUS Image
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Image annotation

Collaborations with Naïk Vietti Violi, Clarisse Dromain, Meri Bach Cuadra, Patric Hagmann, Chirine Attat, Alexandre Teiga, Andreas Hottinger, Monika Hegi

I need a manually traced contour of liver cancer 
tumors

Label the images? 

I need a document-level label and some entities 
tagged to determine glioma response or progression

Label the reports? 
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weak labels



Model development
ML = Theory + Data + Labels + Code + Compute

- Deep learning journal club - 1/month 

- ML Café - quarterly 

Keeping up with state of the art 

- Hands-on intro to ML for biomedical data - 
1.5 ECTS doctoral school course, 2x/year


-  Introduction to ML for biologists - 1 ECTS 
BSc/MSc course, 1x/year


-  Gentle Introduction to Decision Tree and 
Random Forest with Python and R, DCSR 
course, periodic


- A Gentle Introduction to Deep Learning with 
Python and R, DCSR course, periodic


Learning the basics

✓ ✓

RAM: 1TB

CPU: 2x Xeon Gold 6148, 40 cores

GPU: 4x RTX 2080, 1x V100

2 GPU nodes

RAM: 2TB

CPU: 2x EPYC 7742, 128 cores

GPU: 2x RTX 3090

CHUV HPC

12 general nodes
RAM: 128 GB

CPU: 2x E5-2650v2, 8 cores


Jura - 10 nodes
RAM: 256 GB - 1 TB

cores: 32-160

Xeon Phi: 4 nodes


Curnagl - 72 nodes

RAM: 512 GB - 1 TB

CPU: 2x EPYC 7402, 24 cores

GPU: 8x2 V100


UNIL HPC



ML workloads for imaging



Generic pipeline

DICOMweb API

DICOM 
sorting

NIFTI 
conversion

Automated 
QC

preproc

feature 
extraction

model fitting & eval

Data prep

ML

Workflow engines



GPU-bound: Aneurysm detection

Task: locate aneurysms (N=198)

[Di Noto et al, MCLN 2020] [Di Noto et al., submitted (arXiv:2103.06168)]

Approach: detection-by-segmentation
Model: 855K params U-Net, training time 

14h x 5 + tuning (1x RTX 3090 48 GB)

Results: 80% sens @ 1.2 FP 
(in house), 68% @ 2.5 FP 

(challenge, rank 4/18)



CPU-bound: Brain morphometry for diagnosis

[Fischl & Dale, 2001][Sandu et al., 2014]

Task: segment the brain

Approach: FreeSurfer


Runtime: 12 CPU hours (Xeon 
Gold) per subject - but 

embarassingly parallel

graph-based representation: 
morphometric similarity 

network

ML: graph embedding + 
non-linear dimensionality 

reduction + SVM

[Mahdi, 2020]

93% acc 
Alzheimer 
vs controls

SNSF project partnership - PI J. Popp



“storage-bound”: Cardiac MRI processing for imaging genetics

Task: segment the heart & 
estimate motion
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SNSF project CRSII5_202276, collab. with R. van Heeswijk, R. Hullin, P. Meyer, M. Stuber, Z. Kutalik, M. Cuendet, R. Gatta, A. Thomas, J.P. Vallée, D. Carballo 

Unprocessed data: ~ 2.5 GB / subject

x 42’000…

x 2 (processed)…

~ 210 TB



Wrap-up and take-home points

requires tricky depersonalisation to 
implement due to minute details (and 
manufacturer differences) in DICOMs


needs considerably more ethical care than 
typical computer vision problems


is increasingly feasible and scalable thanks 
to open software and standardisation 

efforts

unlocks literally 
millions of images 
for very impactful 

research, both 
basic and applied*

*See related workshops and conferences

https://mlcnws.com/


https://sites.google.com/view/pharml2021

https://www.miccai2021.org


https://www.midl.io/

…

using clinical routine images for ML…

https://mlcnws.com/
https://sites.google.com/view/pharml2021
https://www.miccai2021.org
https://www.midl.io/
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